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Abstract. One of the main goals of model-driven engineering (MDE)
is the manipulation of models as exclusive software artifacts. Model ex-
ecution is in particular a means to substitute models for code. More
precisely, as models of a dedicated domain-specific modeling language
(DSML) are interpreted through an execution engine, such a DSML is
called interpreted-DSML (i-DSML for short). On another way, MDE is a
promising discipline for building adaptable systems based on models at
runtime. When the model is directly executed, the system becomes the
model: This is the model that is adapted. In this paper, we propose a
characterization of adaptable i-DSML where a single model is executed
and directly adapted at runtime. If model execution only modifies the dy-
namical elements of the model, we show that the adaptation can modify
each part of the model and that the execution and adaptation semantics
can be changed at runtime.
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1 Problem of Interest

As programming languages, domain-specific modeling languages (DSML) can be
compiled or interpreted. This distinction was early noticed by Mernik et al. [14]
when comes the time to choose the most suitable implementation approach for
executable DSML:

– Compiled DSML: DSML constructs are translated to base language con-
structs and library calls. People are mostly talking about code generation
when pointing at this approach;

– Interpreted DSML: DSML constructs are recognized and interpreted using an
operational semantics processed by an execution engine. With this approach,
no transformation takes place, the model is directly executable.

With interpreted domain-specific modeling languages (the term i-DSML is
coined in [7]), the ability to run a model prior to its implementation is a time-
saving and henceforth cost-saving approach for at least two reasons: (a) It be-
comes possible to detect and fix problems in the early stages of the software
development cycle and (b) ultimately the implementation stage may be skipped.



One slogan associated to i-DSML should be “what you model is what you get”
(WYMIWYG). Meanwhile, software adaptation and self-adaptive software [16]
have gained more and more interest. Consequently, when building such software
based on i-DSML, the model has to be adaptable at runtime thus requiring to
define adaptable i-DSML.
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Fig. 1. Adaptation loops

The runtime adaptation problem is commonly tackled as a 2-stages adapta-
tion loop (analyze–modification). In the MDE (Model-Driven Engineering) field,
one of the most prominent way to implement this loop is models@run.time [2],
where models are embedded within the system during its execution and acting
primarily as a reasoning support (case (a) in figure 1). The main disadvantage of
models@run.time deals with maintaining a consistent and causal connection be-
tween the system and the model for the model being a valid representation of the
system at runtime. The i-DSML approach naturally circumvents this disadvan-
tage since it suppresses the gap between the system and the model: The system
is the model being executed. The reasoning is still made on the model but the
required modifications are then directly enacted on the model without needing a
representation of the system. Case (b) in figure 1 represents the adaptation loop
in this new context. However, one major requirement for adaptable i-DSML is
that the executed model contains all information necessary for both its execu-
tion and its adaptation. This can sometimes lead to an increasing complexity of
the model and to a difficulty for managing the adaptation when mixing together
adaptation and execution. In this case, one can abstract all the required informa-
tion into a dedicated model for applying common models@run.time techniques
on a model execution system. This solution is depicted by figure 1, case (c). The
only difference with the case (a) is simply that the system is of a special kind:
A model execution system. The problem of this solution is that it reintroduces
the causal link that we precisely try to avoid here. So, both approaches (case (b)
and (c)) are complementary and have pros and cons. Depending on the context,
one approach will be more suited than the other one.

In this paper, we focus on the direct adaptation of an executed model (case
(b) of figure 1). [5,6] are first investigations on this direct adaptation of executed
models, that is, on adaptable i-DSML. They establish what model execution



adaptation is and how to express, through a contract-based approach, that a
model is consistent with an execution environment (if not, the model has to be
adapted). Based on the same example of basic state machines and a train exam-
ple, the contribution of this paper consists in proposing a conceptual character-
ization of adaptable i-DSML. The next section recalls what is model execution
and its well-known conceptual characterization. This characterization is then
extended in section 3 for describing what an adaptable i-DSML contains and is
based on. If model execution only modifies the dynamical elements of the model,
we show that the adaptation can modify each part of the model and that the
execution and adaptation semantics can be changed at runtime. Finally, related
word is discussed before concluding.

2 Characterization of i-DSML

Defining executable models is not really a novel idea. Several papers have already
studied model execution, such as [3,4,7,8,9,10,13,15]. All these works establish a
consensus about what the i-DSML approach assumes:

– Executing the model makes sense. This is much more empirical evidence that
shows us that some kinds of model are executable, others are not;

– An engine is responsible for the execution of the model, that is, its evolution
over time;

– The model comes with all the information necessary for its execution through
an engine: It is self-contained.

Before characterizing precisely what an i-DSML contains, we give a better
understanding of these three assumptions.

2.1 Executable Nature of Models

It exists a general classification of models that may help us to identify mod-
els which have the ability to be executed or not: The product–process duality.
Indeed, models (and meta-models thereof) can either express products or pro-
cesses, regardless of the system studied. By essence, only process models enable
executability of their content since they embody concepts closely related to the
world of runtime: Startpoint, endpoint, time (past/current/future), evolution
step, etc.

Applied to the field of software development standards, we can cite SPEM
as a process modeling language and CMW as a product modeling language.
As another OMG’s prominent example, UML itself provides three categories of
diagrams, namely structure diagrams (Class, Package, . . . ), behavior diagrams
(State Machines, Activity, . . . ) and interaction diagrams (Communication, Se-
quence, . . . ). Logically, only behavior and interaction diagrams may be executed.
Beyond these specific examples, when designing a DSML, it is important to keep
in mind its potential executable nature.



2.2 Execution Engines

An i-DSML is more than just a meta-model (abstract syntax and well-formedness
rules). A language definition also contains a concrete syntax and semantics. The
semantics of the language are captured in the transformation rules in the case of
compiled DSML or in the execution engines in the case of interpreted DSML. An
execution engine is dedicated to a single i-DSML (UML state machines, SPEM,
Petri nets, etc.) and can execute any model conforming to this i-DSML.

The purpose of any execution engine is to “play” or to “animate” the model,
making its state evolving, step by step. Execution operations, implemented by
the execution engine and potentially attached to an element of the meta-model,
manage each execution step of the model. The current state of the model can
be maintained locally within the engine or, differently, embedded into the model
itself. The i-DSML approach singles out having self-contained models embedding
their current state but the former solution can be useful in some cases. Typically,
this is when one requires to execute models conforming to a meta-model not
designed for managing the current state of the model, such as all the dynamic
diagrams of UML. Indeed, the UML standard does not define a current model
state for any of these diagrams that could be executable. In this case, the solution
is to store the current state of the model within the memory of the engine or
to extend the meta-model for managing a current model state. For instance, [4]
did it for UML state machines. However, the extended meta-model differs from
the UML standard.

2.3 Self-contained Executable Models

When self-contained, the current state of the model being executed is stored in
the model itself. Thus, each execution step changes this state. At first glance,
this strategy seems to pollute the meta-model with many details not relevant at
design-time and seems to defeat the abstraction offered by traditional modeling
principles (a model is the abstraction and a simplification of a given system).
However, there are two main reasons justifying to have self-contained models.

The first one is that it offers the major advantage that after each execution
step the current model state can be serialized into an output file1, thereby pro-
viding a complete traceability of the execution as a sequence of models. Some
works, such as [3], even consider that the model can embed its complete execu-
tion trace in addition to its current state. Based on this sequence of snapshots,
one can perform some useful operations like rollbacks, runtime verification (such
as the black-box execution verification of [4]), debugging, testing, and so forth.

The second and main reason is related to the essence of the executable mod-
els. Such models aim at being substituted to the code, at the lowest level, far
away from abstract design models. Hence they have an increased level of details
and complexity required for their executability. Moreover, executability being

1 That is why some authors may consider an execution process just as a sequence of
endogenous model transformations, as explained in [4].



part of their nature, it is unsurprising that they contain elements related to
executability such as the definition of their current state.

2.4 The Design of an i-DSMLModel
Executable Model
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Fig. 2. Conceptual framework for an i-DSML

All elements required for model execution are located at the meta-level. In-
deed, a language is a self-contained i-DSML if one can instantiate models that are
executable through an execution engine. One can identify a recurring pattern [9]
about the constituents of an i-DSML (figure 2):

1. Meta-elements which express the organization of the process modeled,
2. Meta-elements which express the state of the model being executed,
3. Execution semantics which express how the model behaves when being exe-

cuted.

The item (1) is realized by traditional meta-modeling since the engineers
concentrate onto the static structure and associated well-formedness rules of the
models to be built. This is called the Static Part. Item (2) introduces structural
meta-elements intended to store the state of the model at a given point of the
time, also associated with their well-formedness rules. This is called the Dynamic
Part. Last but not least, item (3) deals with defining how the the model is
evolving over time, modifying only the dynamic part (i.e. the static part never
changes). An execution semantics can be defined under several declinations.
An axiomatic semantics enables to complete the specification of the meta-model
with well-evolution rules defining the constraints on how the model evolves [4]. A
translational semantics can be used to apply simulation or verification techniques
of another technological space, such as in [8]. Finally, an operational semantics is
the operationalization of the execution behavior in terms of actions through an



action language and is implemented by an execution engine. As depicted by the
figure 2, the Dynamic Part and the Execution Semantics are specific to i-DSML.

2.5 Executable State Machines

UML state machines are typically one of the best examples of well-known exe-
cutable models. In this paper, we then link our examples to them but, for fluency,
we define concise state machines restricted to a limited number of features: Com-
posite states with deep history states and transitions associated with an event.
Moreover, UML state machines as defined by the OMG do not include a dynamic
part as required for a full-model execution (however [4] proposes an extension
of the UML meta-model for defining a dynamic part for state machines).
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The meta-model of our basic state machines is represented on figure 3 (the
AdaptableElement and [Integer]Property elements are dedicated for manag-
ing the adaptation and will be introduced in the next section). The static part
of the meta-model is composed of the following elements:

– A state that is named and is contained in a composite state.
– Two kinds of pseudo states can be defined: An initial state and an history

state, each one referencing a state of the composite state to which they be-
long. Each composite state must have one and only one initial state. Having
an history state (but only one) is optional.

– A transition between a source and a target states, associated with an event
that is simply defined with a name.

– A state machine is a special kind of composite state. It owns all transitions
and events of the model and must be unique within the model.

The dynamic part of the meta-model is simply composed of two elements.
The first one is the isActive boolean attribute of the State element. It enables



to set that a state is currently active or not. The second is the referenced state
of an history state that references the last active state of the composite state to
which it belongs. One can note that the referencedState relation of a pseudo
state is either playing a static role (for an initial state) or a dynamic one (for an
history state). This state machine meta-model has been implemented in Ecore
for the EMF platform.

Static and dynamic parts are complemented with OCL invariants defining the
well-formedness rules for fully specifying the meta-model. For the static part, it is
for instance required to express that a pseudo state references one of the states
of its composite state. For the dynamic part, the main invariant specifies the
active state hierarchy consistency: Either all the states are inactive (the model
is not being executed) or there is in the state machine one and only one active
state, and if this state is composite, it contains one and only one active state
and so on.

Concerning the execution semantics, both well-evolution rules, defined using
OCL, and an operational semantics, implemented by a Kermeta2 engine, have
been defined. For the sake of brevity, we will not present them. Just note that
their main goal is to define and to implement the main execution step ensuring
that, for an event occurrence, the right transition is triggered depending on the
current active states (that is, the active state hierarchy is accordingly modified).

2.6 A Train Example

The example of this paper is freely inspired of a railway system3. The behavior of
a train is specified through a state machine. The train is stopped or is running at
a given speed, depending on the light signals along the railway. The environment
of execution of the train is the signals that control its speed. Concretely, the
different speeds of the train are specified through the states of the state machine
whereas the signals are the events associated with the transitions between these
states. Within the same state machine, one can specify the behavior of the system
(the train) and its interaction with the execution environment (the light signals).

Execution Environment. The train is running on railways having signals
with 3 or 4 different color lights. There are two different kinds of railways: Normal
speed sections (up to 130 km/h) and high speed sections (up to 300 km/h). The
signal with 3 colors is for normal speed sections while the signal with 4 colors is
for high speed ones. The meanings of the colors are the following (only one light
is put on at the same time): red means that the train must stop immediately,
amber expresses that the train must not run at more that 40 km/h, green means
that the train can run at a normal speed (but not more) and purple that the
train can run at a high speed.

2 http://www.kermeta.org/
3 The state machines of train behaviors and their associated signals of this paper are

not at all intended to be considered as realistic specification of a railway system.
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Fig. 4. A train state machine execution

Basic Train Model. The figure 4 represents a state machine defining the
behavior of a non high-speed train and some steps of its execution. Concretely,
this train is not able to run at more than 130 km/h but is allowed to run at
this speed on high-speed sections. The states define the speeds of the train. For
simplifying, the name of a state is the train speed in km/h associated with this
state. 0 and 40 are then speeds of 0 km/h and 40 km/h, that is the stop state and
the low speed state. When running at a normal speed, the train driver can choose
between two speeds, either 100 or 130 km/h. These two states have been put into
a composite one representing the normal speeds. Transitions between states are
associated with the signal color lights: red, green and amber. The purple color
is not managed here, as the train cannot run at more than 130 km/h, but it
can run at 100 or 130 km/h on a high speed section. There are two particular
events: int SpeedUp and int SpeedDown. These events are internal actions of
the train, that is, correspond to direct train driver actions. For not confusing
them with the external events coming from the execution environment, their
names is prefixed by “int ”.

Execution of the Train State Machine. The figure 4 shows three steps of
execution of the state machine, through the run to completion operation taking
an event name as parameter. This operation processes an event occurrence. The
first step is the initial active configuration of the state machine: Its initial state
0 is active (an active state is graphically represented with a grey background).
Then, for the second step, the Amber event occurs and it makes changing the
current active state that is now the 40 one. Finally, the third step is the result



of the Green event occurrence which leads to activate the Normal state and in
consequence its initial state, the state 100.

Processing a state machine execution consists only in modifying the isActive
attribute value for the states and, for composite states, in changing the referenced
state of its potential history state. As a conclusion, only the dynamical elements
of the model are modified during the execution.

3 Characterization of Adaptable i-DSML

We consider that an adaptable i-DSML is the logical extension of an i-DSML.
Indeed, adaptable models are executable models endowed with adaptation ca-
pabilities.

3.1 The Design of an Adaptable i-DSML

Figure 5 depicts the design of an adaptable i-DSML. As an adaptable i-DSML is
an extension of an i-DSML, this figure extends the figure 2. The added elements
are:

1. Meta-elements which express properties on the model and that should help
its adaptation;

2. Adaptation semantics, leveraging from the aforesaid properties, which ex-
press the adaptation problem and its solution.

Item (1) makes reference to any structural elements and their well-formedness
rules that are added in the meta-model and whose role is to facilitate the sub-
sequent adaptations. This is called the Adaptation Part. Item (2) denotes the
adaptation semantics that is a specialization of an execution semantics. Indeed,
while execution semantics prescribes a nominal behavior, the adaptation se-
mantics expresses also a behavior but for extra-ordinary or abnormal situations
requiring an adaptation. Again, an adaptation semantics can be declined under
the specification form for complementing the meta-model definition [5], or under
the operational form. As a consequence, an adaptation engine implementing the
adaptation semantics is an extension of an execution engine: It processes both
the execution-related operational semantics and the adaptation-related opera-
tional semantics.

Without going into details of how an adaptation semantics is managed or
processed by the engine, we can say that it will mainly be composed of a set of
fine-grained adaptation operations combined by a set of rules. Some operations
are dedicated to checking the consistency of the model and others are actions
concretely realizing the adaptation. The rules are expressed under the form “if
<check> then <action>” and any more complex or recursive combination of
the same kind.

The major point is that the adaptation semantics applies on elements of all
constituents of the adaptable i-DSML: All the structural parts (static, dynamic



and adaptation) and the behavioral ones (execution semantics and adaptation
semantics) are concerned. Concretely, at runtime, the model’s entire content
can be changed including the executed semantics. This brings reflexivity to the
adaptable i-DSML since enabling the adaptation of the adaptation (i.e. meta-
adaptation).Model
Executable Model

MetaModelconforms to
i-DSLconforms to

Static Part<<structure>>
Dynamic Part<<structure>>Execution Semantics<<behavior>>Execution Enginetakes input defined for applies on
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Fig. 5. Conceptual framework for adaptable i-DSML

Categories of Adaptation Actions. We identified two categories of adap-
tation actions: Create/Update/Delete (CUD) and Substitution. CUD actions
target instances of any structural parts (static, dynamic, and adaptation). Sub-
stitution is an action which targets the behavioral parts (execution and adapta-
tion semantics). We consider only substitution for behavioral parts because it is
not feasible to define a new semantics from scratch (concretely, it will consist in
writing lines of code in the engine). Instead, having a set of existing semantics
(i.e. already implemented) and choosing at runtime which of them to process is
straightforward. CUD and substitution can be applied with the following pur-
poses:



– CUD on the dynamic part: The current state of execution is altered (e.g.
force to go back/go forward, restart such as activating a given state for a
state machine),

– CUD on the static part: The structure of the model itself is changed (e.g.
modification of the modelized process such as adding a state or changing the
initial state of a composite for a state machine),

– CUD on the adaptation part: An adaptation-related element is changed (e.g.
the value of a QoS property is modified accordingly to a changing execution
environment),

– Substitution on the execution semantics: Switch from a given interpretation
of the model to another one (e.g. managing execution variants such as the
Harel vs UML transition conflict semantics for state machines),

– Substitution on the adaptation semantics: Switch from a given set of adap-
tation operations to other ones within the adaptation rules (e.g. checking
the consistency of the model with the execution environment in an exact or
fail-soft mode).

Table 1. Adaptation and execution characteristics

Elements of adaptable i-DSML Execution actions Adaptation actions

<<Structure>>
Static Part N/A Create/Update/Delete

Dynamic Part Create/Update/Delete Create/Update/Delete
Adaptation Part N/A Create/Update/Delete

<<Behavior>>
Execution Semantics N/A Substitution
Adaptation Semantics N/A Substitution

Table 1 sums up these categories of adaptation actions and contrasts with
the actions processed by a simple model execution. Indeed, in this case, only the
dynamic part of the model is modified whereas for model adaptation, all parts
and semantics can be changed.

3.2 Adaptation Part for the State Machine Meta-Model

The meta-model of state machines of the figure 3 includes elements dedicated to
the adaptation management. The first one is the elementKind attribute available
for the Event, Transition and State elements through the specialization of
AdaptableElement. This attribute allows the definition of “kinds” for events,
transitions and states of a state machine. A kind has for goal to precise that
an element is playing a particular role. Conceptually, a kind is equivalent to a
stereotype of UML profiles. In addition, through the properties association,
events, transitions and states can be associated with properties. A property is



basically composed of a name and a value. For simplicity, only integer properties
are considered here, but of course, properties of any type could be added on
the meta-model (the definition of properties can of course be based on reusing
existing adaptation works, such as [11] which defines a generic meta-model for
specifying properties and associated rules depending on their values). Properties
can deal if required with QoS parameters and values. Conceptually, a property
is equivalent to a tagged value of UML profiles.

As shown in the following, kinds and properties can be used for managing the
adaptation of a state machine execution thanks to the additional information
they offer. Kinds can be used to define fail-soft mode of consistency against
an execution environment. Properties associated with events of the execution
environment enable the modification of the executed state machine for managing
unexpected events.

3.3 Runtime Adaptation of the Train State Machine
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The main adaptation rule consists in first checking if the behavior of the
system is consistent with the execution environment, that is concretely here, if
any signal is understandable and correctly processed by the train state machine.
Secondly, when the system is not consistent with the environment, to perform
an adaptation action such as switching in a fail-soft checking mode or modifying
the structure of the model.

As explained in [5,6], specific design constraints can be applied for verifying
the consistency of a model against an execution environment. The problem is
that it is necessary to be able to distinguish an unexpected interaction – requiring
to take an adaptation decision – from an expected and already managed one. For
state machines, it is required to be able to determine if an event is expected or
not. Several solutions are possible, such as parameterizing the execution engine
with the list of expected events and to verify for each event occurrence if it is
in the list. The solution applied here is self-contained in the model by adding
explicitly a transition starting from each state for each expected event. Figure 6,
part (a), shows the modification of the train state machine: For every expected
color events (red, amber, green and purple), there is a transition starting from
each state. When a color event leads to remain in the same state, it is a self-
transition (leading to the historical state of a composite for composite states).
Now, excepting for internal events starting by “int ”, each event, corresponding
to a color of signal crossed by the train, triggers a transition. If no transition is
associated with an event according to the current active states, then this event
is unexpected and an adaptation action has to be performed.

Based on this new train state machine definition, as an illustration, we de-
scribe here seven adaptation operations (two adaptation checking and five adap-
tation actions including one modifying the adaptation semantics) and two exe-
cution semantics variants for the state machine meta-model.

Adaptation Checking. The main verification is to determine if an event is
expected or not. This verification can be made in an exact mode or in a fail-
soft mode through the kinds of events. Let us consider the occurrence of the
purple signal event. The train is not able to run at a high speed level, so, when
crossing such a purple signal, the train will run at a normal speed. For this
reason, the train state machine of figure 6 part (a) leads to the state Normal for
each occurrence of the purple event.

The exact mode consists in verifying that there is a transition associated
with the exact event (through its name) and the fail-soft mode that there is a
transition for the kind of event and not necessary for the exact event. Figure 6,
part (b), shows a variant of the train state machine where kinds and properties
have be added onto states and events. There are three kinds of states (the kinds
are represented through the << .. >> UML stereotype notation): The 0 state is
a stop state, the 40 one is a low speed state and the composite state Normal is a
normal speed state. The events, depending of their associated target state4, are
4 We rely on a dedicated restriction on the state machines: All transitions associated

with a given event are always leading to the same state. For instance for the train



also tagged with kinds: red is a stop event, amber is a low speed event, green and
purple are normal speed events. One can notice that transitions associated with
the purple color have disappeared. Indeed, in a fail-soft mode, the purple event
will be processed as the green one because there come from the same normal
kind. The purple color is for the train considered as a green one even if they do
not have the same role and meaning.

The verification mode can be changed at runtime: A checking adaptation op-
eration can be substituted by another one (changing in that way the adaptation
semantics). If the model of the figure 6, part (b), is executed and if the train is
running on normal speed sections, then the verification mode can be the exact
one because the red, amber and green signals that can be crossed are directly
and exactly processed for each state of the state machine. However, if the train
is now running on a high-speed section, it can cross a purple signal that is not
directly processed in the exact mode. An adaptation action can be to switch into
a fail-soft verification mode and to recheck the validity of the purple signal. In
this mode, as explained, this signal will be considered as a green one and will be
processed.

From an implementation point of view, our Kermeta execution engine has
been extended for managing the adaptation. Mainly, a pre-condition has been
added for the run to completion operation that processes each event occur-
rence. This pre-condition performs the chosen adaptation checking and, if not
respected, an adaptation action is executed.

Adaptation Actions. In addition to substituting an adaptation checking op-
eration by another one, several adaptation actions can be taken in case of un-
expected events, that is, in case of a changing execution environment. A very
basic action is to stop the execution of the state machine if there is no way to
decide how to handle the event. A more relevant adaptation action is to load a
new state machine (a reference one as defined in [6]) that is able to manage the
new execution environment if such a state machine is available.

If the unexpected event is associated with properties, they can be used to
determine if this event can target an existing state of the state machine or, if
not, to add the associated state and transitions on the state machine. Figure 6,
part (b), defines a speed property for each event and state. Properties are rep-
resented similarly to tagged values of UML profiles (as the {speed=XXX} ones).
For instance, the amber event and the state 40 are both associated with a speed
property of the value 40, that is, 40 km/h. Let us suppose that, if this train state
machine is executed, a white signal, of a reduced kind and a speed property of
70 km/h, is crossed. In both exact and fail-soft verification modes, this white
event is an unexpected one. As no state has a speed property with a value of 70,
a new state called 70 is created with the same kind and speed property as the
white event. All required transitions, starting from or leading to this new state,
have also to be added: Each existing state must be the source of a transition

state machine, independently of the source state, the amber event always leads to
the state 40.



associated with the white event and leading to this new state and for each color
event (red, amber and green) there must be a transition starting from this new
state and leading to the required state. The figure 6, part (c), shows the resulted
runtime modification for managing the white signal. An important point to no-
tice about this model modification is that it is based on the comparison of the
properties without requiring to know what they are and what they are repre-
senting. The adaptation engine simply compares two sets of properties through
their names and values.

A last adaptation action could be to force the activation of the state that is
from a stop kind (the state 0 for the train state machine) in case of an unexpected
event (this action is different from stopping the execution of the state machine
as described above because here the state machine is still being executed). The
idea is that the train stops if it does not understand a signal.

Execution Semantics Variants. For state machines, a transition conflict ap-
pears when a transition is starting from a composite state and that there is also
a transition associated with the same event starting from an internal state of this
composite. The way to choose which transition to fire when this event occurs is
a semantics variation point. According to the UML semantics5, it is the most
internal one that is fired while the original Harel statecharts semantics [12] leads
to fire the external one starting from the composite.

When loading a state machine model, including at runtime when changing
the current state machine by another one suited for a new context of execution,
it is required to know with which execution semantics it was designed. We can
imagine a property associated with the state machine and precising which kind of
transition processing variant must be used. Then, the execution engine embeds
the operational code for each semantics and the right one is processed depending
of this property value. In other words, when changing the executed model as
an adaptation action, the current operational semantics can be substituted by
another one if needed.

4 Related Work

As written, several papers such as [3,4,7,8,9,10,13,15] have already studied model
execution. Section 2 summarizes the consensual characterization of model exe-
cution based on these works.

Concerning the adaptation of model execution, as far as we know, there are
no other works except ours which have studied this subject. [5,6] have been used
as a base for defining the direct model execution characterization exposed in
this paper. The MOCAS platform [1] defines a UML agent state machine ob-
serving an executed business UML state machine and requiring changes on its
current state or structural content. The adaptation is then made following com-
mon models@run.time adaptation techniques (case (c) of figure 1). The problem

5 http://www.omg.org/spec/UML/2.2/



is that the adaptation and the execution operations are strongly mixed-up in the
implementation platform. This leads to the absence of separation of the adap-
tation logic from execution. Moreover, the platform does not enable to replace
at runtime the adaptation or execution semantics as we propose.

[13] offers a characterization of models at runtime and related adaptation
in the same spirit of this paper. But there are two main differences with our
characterization of direct adaptation of model execution: (a) It always considers
that the model, even when executable, is causally connected with a running
system whilst for us the executed model is by essence the system and (b) it does
not go as far as us about the elements that can be modified by the adaptation:
It does not consider that the execution semantics or the adaptation semantics
can be changed.

5 Conclusion

In this paper we propose a conceptual characterization of the direct adaptation
of model execution, through the concept of adaptable i-DSML. Albeit model
execution and adaptation are closely related (as an adaptation semantics is a
specialized execution semantics), there are two sharp demarcation lines. The
first one, from a general point of view, is about the intention embodied in the
semantics. Indeed, an execution semantics deals with a nominal behavior whereas
an adaptation one concerns extra-ordinary or abnormal situations. The second
one, from a technical point of view, is that model execution only modifies the
dynamic elements of the model whereas model adaptation can modify each part
of the model and the execution and adaptation semantics.

The presented execution and adaptation engine is a first prototype showing
the interest of studying the adaptation of an executed model. We need to de-
velop more realistic and complex case studies and to consider the adaptation
of other kinds of adaptable i-DSML. Notably, we plan to extend our existing
tools dedicated to execute full standard UML state machines: SimUML6 is a
simulation tool at the design level and PauWare7 a Java library implementing
and executing UML state machines for any Java platform, including Android
devices. The goal is to define and implement adaptation operations and seman-
tics for UML state machines. We plan also to enhance our MOCAS platform for
making it clearly separating the adaptation from the execution. These platforms
and complex case studies will allow us to study the limits of directly adapting
a model execution versus applying common models@run.time techniques on it.
One of our perspective is to determine when one approach is more suited than
the other one. Finally, just as an action language is provided for expressing the
execution semantics, a mid-term perspective is to provide a full-fledged adapta-
tion language. This DSML will support the adaptation loop by offering language
constructs for both checking and actions. Concretely, it will enable to define sep-
arately the execution logic and the adaptation one, and then to express how the
6 http://sourceforge.net/projects/simuml/
7 http://www.pauware.com/



adaptation checking and actions are orchestrated and weaved with the execution
operations.
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