
Yet Another DSL for Cross-Platforms Mobile Development

Olivier Le Goaer
∗

LIUPPA, Université de Pau
64000 Pau, France

olivier.legoaer@univ-pau.fr

Sacha Waltham
LIUPPA, Université de Pau

64000 Pau, France
sacha.waltham@etud.univ-pau.fr

ABSTRACT
With the growing success of mobility, mobile platforms

(iOS, Android, WindowsPhone, etc.) multiply, each requi-
ring specific development skills. Given this situation, it be-
comes very difficult for software developers to duplicate their
apps accordingly. Meanwhile, web-based applications have
evolved to be “mobile-friendly” but it appears that this is
not a silver bullet : the user experience and the overall
quality is still better with native applications. Of course,
cross-platform mobile development tools have emerged in
recent years. This paper provides a survey of these tools
and points out that a full-fledged language for mobile de-
velopment is highly desirable. Consequently, we present a
preliminary work on Xmob , a technology-neutral DSL in-
tended to be cross-compiled to produce native code for a
variety of platforms.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-

niques; D.3.2 [Programming Languages]: Language Clas-
sifications—Specialized application languages

General Terms
Languages

Keywords
mobile, cross-platform, DSL, MDA

1. INTRODUCTION
We have definitively entered an era of mobility. Evidence

of that is the phenomenal growth of mobile markets, in
terms of both the number of devices sold (essentially Smart-
Phones and Tablets) and number of downloaded mobile ap-
plications. But this growth has been accompanied by a frag-

∗Member of the PauWare Research Group -
http://www.pauware.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GlobalDSL ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2043-6 ...$15.00.

mentation of the mobile platform (or mobile OS), which se-
riously complicates the task of mobile apps developers. An
application must be made available on as many platforms
as possible in order to reach diverse user base. However the
mobile platforms landscape is very quickly evolving : there
are over ten different platforms (e.g., Android, iOS, Win-
dows Phone, Blackberry, Firefox OS), and it is likely that
in under a year a few of those will gradually disappear as
others emerge. In addition, every platform comes with its
own SDK and requires specific programming skills, in terms
of both languages and API.

As such, this heterogeneity creates very important addi-
tionnal redevelopment costs for software developers, who are
thus compelled to focus their skills on just a few platforms,
usually only two or three. It is worth mentionning that this
lack of sustainability in software development was already
encountered in the past, and therefore the MDA [5] returns
centre-stage with the slogan : “Write once, run everywhere”.

Surprisingly, existing research attempts [6, 7, 8, 9, 11] have
not used model-driven techniques to tackle the heterogeneity
issue but rather to improve the development process for a
given mobile platform or even a given mobile usage, along
with a strong focus around the UML langage. In contrast,
this research paper proposes a language dedicated to mobile
development, named Xmob , that is designed to capture
sufficiently common and high-level concepts to be shared by
different platforms – present and yet but likely to come. This
DSL will output native code skeletons, using the MDA ap-
proach, i.e., through model refinement (PIM – PSM – Source
code), and the use of (meta)modeling languages standardi-
zed by OMG (MOF and UML2). The Xmob language is de-
signed for computer programmers, but who no longer need
to be experts in each mobile platform, which allows us to
consider the two following uses :

1. From an agile development point of view, Xmob will
allow for a faster prototyping, by several stakeholders,
even including the end-customer.

2. From an academic point of view, Xmob will make mo-
bile development more easily accessible to undergra-
duate students. It will also spare the teacher from ha-
ving to choose only one platform during his course.

The rest of this paper is organized as follows : in Section 2
we contribute to the debate between a web-based or native-
based strategy when it comes to the issue of developing a
mobile app. Section 3 lists the existing cross-platform deve-
lopment solutions, and compares them through pragmatic
criteria. Then we describe the key elements of our future
Xmob DSL in Section 4 before concluding and giving our

perspectives in Section 5.

2. WEBAPP VERSUS MOBAPP
Generally speaking, web-based applications development

(WebApps) is very popular and has logically adapted to a
mobile use. WebApps considered “mobile-friendly” are most
often obtained through frameworks such as jQuery Mobile 1,
jQT 2 (formerly jQTouch), Dojo Mobile 3 or Sencha Touch 4.
At first glance, those applications seem ideal since they are
inherently and effortlessly portable from one mobile OS to
another, as they are executed through a web browser. Never-
theless, even Facebook creator Mark Zukerberg has recently
recognized [1] making a mistake by neglecting native ap-
plications (MobApps) and the unparalleled user experience
they offer. Indeed a MobApp is specific to the OS for which
it is designed, and can be characterized by the following
items :

– User Interface (UI) : Each OS is characterized by its
own aesthetics and interaction modes, which are per-
fectly recognizable : the look’n’feel. Through potential
rejection of an app on the official store, OS vendors show
they are anxious to unify the UI of the downloaded ap-
plications, for a user-friendly and seamless feeling ;

– System Access : this includes the access to applications
already installed on the system, the information they
contain (address book, photo gallery, etc.), and liste-
ning to system events (resuming from sleep, evolution
of battery power, receiving an SMS, etc.) ;

– Hardware Access : Smartphones and tablets of medium
and high quality have a large collection of sensors (light,
acceleration, pression, etc.) that make it possible to
consider many exciting applications. We must not forget
either a smart use of short-range wireless interactions
such as NFC or Bluetooth ;

– Performance : mobile users are a more impatient, more
demanding population than others, and hence mobile
applications need to be able to run quickly, and steadily.
Another level of indirection introduced by a browser at
runtime is unacceptable in a lot of situations, where the
application’s reactivity is paramount, as in video games
for instance.

Despite the capabilities of modern browsers (geolocaliza-
tion, web storage, WebGL, etc.) and the evolution of the as-
sociated W3C standards (HTML5, CSS3, etc.), as other au-
thors [3] we remain convinced that the cross-platform chal-
lenge is currently in the development of native applications,
and not mobile web applications.

Several solutions have recently emerged to try and satisfy
all or part of the previous items. The term XMT (Cross-
platform Mobile development Tool) was suggested in [2] to
qualify that kind of solution.

3. A PRACTICAL SURVEY ON XMT
Existing XMT comparisons are often scattered over unof-

ficial sources like blogs’ posts. Even surveys found in the
academic literature [2, 4, 12, 13] are partial. In this regard,
we propose in this section to gather existing solutions and
to establish very pragmatic criteria for their comparison.

1. http://www.jquery.com
2. http://www.jqtjs.com
3. http://www.dojotoolkit.org
4. http://www.sencha.com/products/touch

3.1 Write once ? Run everywhere ?
Note that the slogan“Write once, run everywhere” is made

up of two parts. The first one concerns which source lan-
guage(s) the computer programmer will have to write his
application only once. The second concerns which target
platforms are supported, i.e., the ones that will be able to
run the code.

3.1.1 Write
This criterion deals with the skills the programmer has to

possess. We will distinguish three categories :
– Web-related languages : typically the triplet HTML /

CSS / JavaScript, because their programmers’ commu-
nity is very large. The development method is web-like,
but the result tends to get close to that of a native app ;

– Mainstream languages : we can cite Java, C++, or even
Ruby. These general-purpose languages are supported
by their own communities, and have already proved
their qualities in the past ;

– Domain-specific languages : DSLs present the advan-
tage of offering constructions dedicated to mobile soft-
ware development. The problem with those languages is
that they often lack clear documentation, making them
harder to learn.

3.1.2 Run
This criterion deals with the technique used to be able to

execute the same code on different targets. We will distin-
guish two classic methods :

– Interpretation : The interpreter bridges the construc-
tions of the source language with calls to the hosting
system’s native functions. This assumes that such a
bridge must be developped for each mobile platform.
It can be installed in the manner of a virtual machine,
or be packaged with each application installed onto the
device ;

– Cross-compilation : The compiler operates a translation
from the source language to several target languages.
Each new platform requires to add a new transforma-
tion rule to the compiler. Nothing distinguishes even-
tually generated code from code written directly by an
engineer competent with the target platform’s SDK.

3.2 Selected tools
We decided to study twelve solutions found in the lite-

rature or available on their official websites : Rhodes, Li-

veCode, Tabris, Apache Cordova (formerly PhoneGap), Ti-
tanium, Neomades, XMLVM, Canappi, APPlause, MoSync,
Codename One and Marmelade SDK. The strict application
of our viewpoint on the debate of Section 2 excludes from
this list solutions that do not ensure a native experience,
like MobL 5, Moscrif 6, Icenium 7 or Mobia Modeler [6], and
the family of Rich Internet Applications (RIA) frameworks
(Adobe Flex,Microsoft Silverlight, Vaadin/Google Web Tool-

kit, etc.). Moreover, some XMTs can either generate stan-
dalone or client-server mobile applications (n-tiered archi-
tecture). Obviously only the part executed on the mobile
terminal is taken into account. Let us have a more detailed
look on these selected XMT below :

5. http://www.mobl-lang.org/
6. http://moscrif.com
7. http://www.icenium.com/

1. Rhodes (www.rhomobile.com) is a software product re-
leased by a company called Rhomobile Inc. Based on
a MVC pattern (Model/View/Controller), views are
written in HTML 5, and controllers in Ruby, then com-
piled into Ruby 1.9 bytecode. Applications are provi-
ded with a Ruby virtual machine, that will execute the
bytecode.

2. LiveCode (www.livecode.com) introduces the principle
of a very high level language where code is written in
a near-English syntax and compiled to a C++ engine,
providing an abstraction layer over the mobile Opera-
ting System.

3. Apache Cordova (www.phonegap.com) operates by in-
terpreting HTML5/CSS3 code for views, and JavaS-
cript code using an abstraction API, allowing system
and hardware access (camera, accelerometer, etc.). The
user interface is presented like a“chromeless web brow-
ser”, used as a WebView (class UIWebView in iOS,
class Webview in Android). Packaged binaries include
the browser and the application sources.

4. Titanium (www.appcelerator.com) precompiles JavaS-
cript code into a set of symbols, resolved based on the
targeted mobile OS (compiled .o files for iOS, .class
files for Android). When resolution is over, and the
generated dependancy matrix can be understood by
the front-end, the adequate back-end compiler is cal-
led to compile it into binaries. Those also include a
JavaScript interpretor, packaged with the application
for performance reasons, and reading dynamic code.

5. Tabris (www.eclipsesource.com/tabris/) is a Java-
toolkit for the cross-development of native iOS and An-
droid apps, relying on a web server (based on Eclipse
RAP) which generates the UI in JSON form. A run-
time engine (the Tabris client) will access the server,
receive the UI description and render it using native
components. The UI, server-side, is written in Java
SWT ; the clients are available for iOS, Android, and
basically anything that can read and render JSON and
HTML.

6. Neomades (www.neomades.com) proposes a tool for de-
velopping cross-platform applications, in a license mode,
or in a service mode. The JavaME code is compiled for
each target platform.

7. XMLVM (www.xmlvm.org) is a tool allowing to directly
recompile instructions in (front-end) Java or .Net CIL
bytecode, rather than working at a source code level.
Several back-ends allow to generate Java or CIL byte-
code, or JavaScript, Python, Objective-C.

8. Canappi (www.canappi.com) is an approach allowing
to generate code for Android, iOS, or Windows Phone
(with optionnal PHP / MySQL files), using MDSL, a
simple to learn and use language. The code generation
uses the MDA approach.

9. APPlause (applause.github.io) is a DSL using the
Xtend technology to generate native iOS, Android, or
WP7 code. That code, Java, Objective-C, C#, or Py-
thon, is human-readable, and can be reworked before
deployment.

10. MoSync SDK (www.mosync.com) is an IDE allowing
to develop in C/C++ or in HTML5/JavaScript, com-
plex mobile applications for multiple platforms. The

C/C++ code is compiled into an intermediate lan-
guage, MoSync IL, using a GCC back-end. Based on
the target platform, this intermediate code is packaged
with a runtime engine (for JavaME and Blackberry)
which will interpret it. For Android, Symbian, Win-
dows Mobile, etc. the process is similar ; the runtime
recompiles the code into ARM bytecode, which is then
directly executed. For iOS, the process is different still,
as MoSync IL code isn’t generated. It is instead trans-
lated into C, and an xCode project is generated.

11. Codename One (www.codenameone.com) is a Java-based
platform, allowing to create real native apps, on seve-
ral mobile platforms. Using plugins for NetBeans or
Eclipse, a developer can build an application using
Java and a Swing-like API, and a drag-and-drop GUI
builder. Apps are then deployed, directly in Java for
Android, BlackBerry, and JavaME devices ; for iOS the
code is translated to C/Objective-C using XMLVM ;
for Windows Phone a C# translator is used.

12. Marmelade SDK (www.madewithmarmalade.com) is
mainly used as a game engine, as it can access the
OpenGL ES API to render graphics, and directly sup-
ports features intended for game design. It comprises
two layers : a low-level, C-based API, provides an abs-
traction layer that allows a programmer to access the
device functionalities simply ; a high-level, C++-based
API, is used for graphical (2D or 3D) rendering, re-
source management and HTTP networking. Marme-
lade apps are interfaced with the OS using an OS-
specific loader.

3.3 Results and remarks
Table 1 summarizes the different elements introduced in

sections 2 and 3.1, namely the language skills, the running
technique in terms of interpretation (I) or cross-compilation
(C), the look’n’feel, the system and data access, and the
list of supported mobile platforms 8. Performance is removed
from the table, since it has to be evaluated in consideration
of specific features (e.g., 2D/3D rendering), and transcompi-
lation typically gives better results than interpretation. The
meaning of the symbols used in the table are the following :
yes (✓), no (✗), partial (/) and empty cell when unknown.

When looking at table 1, we can first draw a demarca-
tion line between solutions that are full-native and the ones
that are semi-native (typically HTML display + bindings to
native calls). We observe a causal relationship between the
type of solution and the underlying execution technique :
full-native is obtained through transcompilation while semi-
native is obtained through interpretation.

Secondly, most of the solutions above require exactly the
same level of details for programming than native, but rather
allow people to use well-known languages. This is undeniably
a crucial aspect for software companies that have to reuse the
skills of their in-place developers. In constrast, a DSL aims
at actually decreasing the effort needed to write a program,
surprisingly very complex.

Hence, we clearly argue in favor of transcompilation in
this paper, along with a mobile-specific language. In this
regard, our position is closely related to that of the Canappi
or APPlause solutions, that provided interesting proofs of

8. We neglect the platform version for the sake of simpli-
city.

Table 1: Results of the survey on XMT in 2013. May be deprecated when reading this paper.
Supported Platforms

Write Run Look’n’Feel
System
Access

Hardware
Access iO

S

A
n
d
ro
id

B
la
ck
b
er
ry

W
in
d
ow

s
P
h
o
n
e

S
y
m
b
ia
n

B
a
d
a

F
ir
ef
ox

O
S

U
b
u
n
tu

T
o
u
ch

M
ee
g
o

W
eb

O
S

Rhodes
Ruby /
HTML5

I ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

LiveCode LiveCode I ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Cordova HTML5 / JS I ✗ / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

Titanium HTML5 / JS I ✗ / ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Tabris Java I ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Neomades Java C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

XMLVM Java / .Net C ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Canappi MDSL C ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

APPlause APPlause C ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

MoSync
C++ /

HTML5 / JS
C ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Codename One Java C / I ✓ / ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Marmelade SDK C/C++ C / I ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

concept. But as it is well admitted that several languages
may be competing (e.g., Java versus C++ versus C#), we
decided to give rise to our own initiative : Xmob .

4. THE XMOB DSL : A ROADMAP
The purpose of Xmob is to abstract away all specifici-

ties from one platform to another. It aims at capturing their
commonalities in terms of a high-level mobile dialect. Conse-
quently, constructs of the language are directly related to the
vocabulary of mobile devices such as receiving an SMS, no-
tifications, screens and transitions, etc. Hence, a developer
using Xmob will be able to efficiently describe an app using
those common concepts.

4.1 Elements of design
The idea of a mobile application can be captured through

different events, triggered by user actions or by the OS, also
through a user interface, and data retrieved from various
sources ; these events are highlighted in Xmob , along with
interface description and data sources.

In the manner of the well-known MVC pattern which de-
couples and interrelates three major concerns, Xmob lan-
guage is in fact divided into the three sub-languages below :

– xmob-data : deals with data sources and their access ;
– xmob-ui : deals with all elements displayed ;
– xmob-event : deals with the events linking every user

interface and data elements together.

These languages allow the app developer to easily modu-
larize each part of the application, writing code for different
purposes in different files, which are thus easier to reuse.

4.1.1 xmob-ui
The xmob user interface language is used for describing

the elements that the app will present. We accept in this lan-
guage that, from a user point of view, an app can be broken
down into a succession of screens, each of them containing

different GUI elements (also known as Widgets), such as
forms, buttons, lists, and such. Some of them are intended
to be populated from data sources.

Xmob-ui is thought this way : here the developer speci-
fies only visual elements, that will automatically be placed
at compilation, linked together and such by functions called
from other files. We distinguish screens from built-in screens
which correspond to already available screens within appli-
cations like the dialer, the address book, map, media player,
etc.

In this way, we can write a simple “hello world !” program,
using only the xmob-ui language :

1 @launch
2 screen Hel lo {
3 t i t l e : ’My first screen ’
4 body {
5 label : ’ Hello world ! ’
6 l i s t

7 }
8 }
9

10 @bui l t in
11 screen Dia l e r

If we take a look at that snippet, there are various ele-
ments to be noticed. The annotation @launch specifies the
following screen to be the one the application will launch.
We open a screen with the identifier name Hello and the
title My first screen, and put inside its body a label and
a list. We use an implicit layout manager so that the label
and the list will be, by default, centered on the screen. The
annotation @builtin specifies that the screen is externally
defined in a third-party mobile app.

4.1.2 xmob-data
Mobile apps often require retrieving data, be it from a

database, a webservice or something else. Xmob-data allows
the developer to work with a diverse set of inputs.

1 −−Remote data source

2 cnnNews as datasource [access : remote , return : xml]{
3 url : ’ http :// cnn. com/ newsFeed . php? date =2013 -04 -8 ’
4 }
5

6 −−Local data source

7 cust as datasource [access : l o c a l , return : r e cord]{
8 entity Customer {
9 S t r i ng f irstName

10 S t r i ng lastName
11 Date b i r th
12 }
13 }

4.1.3 xmob-event
As previously stated, an application is essentially consti-

tuted of a GUI, data to fill it, and events to glue every-
thing together. We dealt with the two first considerations.
An event can be any kind of user interaction or system alert
that can be captured by an app.

Xmob-event is used to listen to any event and to call func-
tions accordingly, using on/do rules. For instance, we have
button1 on Screen1, and wish to link to Dialer when that
button is pressed. A xmob-event file might look like this :

1 −−User−de f ined event

2 on buttonpre ss [Screen1 . button1] do {
3 open Dia l e r
4 }
5

6 −−System−de f ined event

7 on ne tworkava i lab le [SYSTEM] do {
8 close Dia l e r
9 open Hel lo

10 fetch cnnNews into Hel lo . l i s t s [0]
11 }

Here, using the event buttonpress with the argument
Screen1 .button1 we define very simply the action to take
whenever a user presses button1.

We distinguish system-defined functions (a predefined set)
from user-defined ones, as well as system or user-defined
events. System-defined functions include opening a different
screen (as in the previous example), opening another appli-
cation (like the system calendar, or the phone dialer), sen-
ding an SMS, etc. System-defined events are for instance an
incoming call or SMS, a low-battery warning, whereas user-
defined ones can be a pressed button, a particular gesture
and so on. For instance, when the network becomes available
again (event networkavailable) we wish to show the Hello
screen populated (keywords fetch into) by a news feed.
Of course, the underlying fetching technique (SAX Parser,
DOM Parser, JSON Parser, Cursor Loader, Unserialization)
depends on the return type declared in the xmob-data file.

4.2 Xmob crosscompiler
From a MDA point of view, one way to achieve cross-

compilation is to refine an input model into output models,
through model transformation techniques (one-to-many). That
is the solution that supports the architecture of the Xmob

crosscompiler, as depicted in Figure 1.

4.2.1 Models and metamodels
In accordance to the MDA vision, we have two levels of

refinement :
– PIM : Xmob is independant from the different mobile

OS so that engineers can focus on the essential, ignoring
technical details at first ;

Figure 1: MDA-compliant architecture of the Xmob

crosscompiler.

– PSM : The technical details, specific to each mobile
platform, are directly woven. Here we use the UML2
(class and activity diagrams) language with dedicated
profiles.

4.2.2 Model transformations
Starting withXmob and ending to native code, each trans-

formation chain contains two model-to-model (M2M) trans-
formations and one model-to-text (M2T) :

– PIM2PSM : translation of high-level DSL concepts into
their equivalent. Matches are far from trivial ;

– PSM2PSM (optional) : iterative introduction of best
practices (naming conventions, various refactorings, etc.) ;

– PSM2Code : production of source code corresponding
to the elements in the PSM. At this level, matches are
quite direct.

4.3 The Xmob solution delivery
In this section we describe the software development rela-

ted to the Xmob roadmap and the way it will be used as a
launch pad by developers of mobApps.

4.3.1 Implementation
In order to implement the solution described in this sec-

tion, we rely on the Eclipse Modeling Framework (EMF)
tooling. Here are the technical choices we have made :

– EMF provides native tools for metamodeling and mo-
deling, plus the facility to build plug-ins inherited from
Eclipse ;

– Xtext is a lightweight tool for the development of one’s
own text editors and concrete syntax for languages ;

– Kermeta is a transformation engine well-suited for the
support model-to-model transformations ;

– Xpand provides a template-based engine for model-to-
text transformations.

4.3.2 Packaging
The idea is to distribute Xmob as an Eclipse IDE plug-

in, in forms of dedicated perspectives and views, including
a complete code editor (syntax highlighting, code comple-
tion and folding, customized outline, validation, etc.) and
a generator module. This module will be itself extendable,

dynamically loading each available transformation chain as
an add-on (one per target mobile platform). Last but not
least, wizards will provide assistance to the developers when
creating a new Xmob project and when generating to the
desired target platforms.

4.3.3 Features
The code skeleton produced by the Xmob plugin will be

organized (i.e., directories and files) as expected by the tar-
geted SDK, and ready to be imported as is in the advised
IDE : an Eclipse+ADT project structure in the case of An-
droid, an X-code project in the case of iOS, a QtCreator
project in the case of Ubuntu Touch, and so on. Such pro-
jects ought to be reworked and complemented subsequently,
manually. Finally, the IDE’s configuration, compilation of
the generated code and deployment of the binaries are out
of the scope of the Xmob plugin, remaining the entire res-
ponsibility of the developers of the mobApps.

5. CONCLUSION AND ON-GOING WORK
Since the mobile market has become fragmented, mobile

app development across a wide set of platforms is a big hea-
dache for developers. In this paper we provided a straightfor-
ward comparison of existing cross-platform tools that alle-
viate the development efforts, discarding the web apps which
are too naive a solution for the time being. Then, we introdu-
ced a new language called Xmob dedicated to mobile soft-
ware engineers, albeit not experts on every platform, and
intended to be cross-compiled through model transforma-
tions, as prescribed by the MDA approach.

The very short-term perspective of this work is obviously
to continue to refine the scope of Xmob as well as to start
the development of its plug-in for Eclipse IDE. A mid-term
perspective is to deal with the progressive migration of le-
gacy material : the idea is to then turn Xmob into a pivot
language when recovering from already coded mobile app,
prior to regenerating towards further platforms.

6. REFERENCES
[1] “The biggest mistake we made as a company was betting

too much on HTML5 as opposed to native”, Interview
of TechCrunch Disrupt, San Francisco, USA, 2012.

[2] Julian Ohrt and Volker Turau, Cross-Platform
Development Tools for Smartphone Applications, In
Computer Journal, Los Alamitos, USA, 2012

[3] Andre Charland and Brian Leroux. Mobile application

development : web vs. native. In Communications of the
ACM, pp. 49–53 , Volume 54, Issue 5, May 2011.

[4] Andreas Sommer and Stephan Krusche. Evaluation of

cross-platform frameworks for mobile applications. In
Proceedings of the 1st European Workshop on Mobile
Engineering, February 2013.

[5] Anneke G. Kleppe, Jos Warmer and Wim Bast, MDA

Explained : The Model Driven Architecture : Practice

and Promise, Addison-Wesley Longman Publishing
Co., USA, 2003

[6] Florence Balagtas-Fernande, Max Tafelmayer and
Heinrich Hussmann, Mobia Modeler : easing the

creation process of mobile applications for non-technical

users, Proceedings of the 15th international conference
on Intelligent user interfaces, pp. 509–512, Hong Kong,
China, 2010.

[7] Peter Braun and Ronny Eckhaus, Experiences on

Model-Driven Software Development for Mobile

Applications, in Proceedings of the 15th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems, pp. 490–493,
2008

[8] A.G. Parada and L.B. de Brisolara, A Model Driven

Approach for Android Applications Development, in
Brazilian Symposium on Computing System
Engineering, IEEE Computer Society Press, pp.
192–197, 2012.

[9] Min Bup-Ki, Ko Minhyuk, Seo Yongjin, Kuk Seunghak
and Kim Hyeon Soo, A UML metamodel for smart

device application modeling based on Windows Phone 7

platform, in Proceedings of TENCON 2011 - IEEE
Region 10 Conference, pp. 201–205, 2011

[10] Wang Zongjiang, The study of smart phone

development based on UML, Computer Science and
Service System (CSSS), pp. 27916-2794, 2011.

[11] Frank Alexander Kraemer, Engineering Android

Applications Based on UML Activities, In Model
Driven Engineering Languages and Systems, pp.
183–197, LNCS, Springer, 2011

[12] Henning Heitkotter, Sebastian Hanschke and Tim A.
Majchrzak, Evaluating Cross-Platform Development

Approaches for Mobile Applications, In Web
Information Systems and Technologies, pp. 120–138,
LNBIP, Springer, 2013

[13] Manuel Palmieri, Inderjeet Singh and Antonio
Cicchetti, Comparison of Cross-Platform Mobile

Development Tools, In 4th International Workshop on
Business Models for Mobile Platforms, IEEE
Communications Society, October 2012, Berlin,
Germany.

