Model Execution Adaptation?

Eric Cariou
LIUPPA / Université de Pau
B.P. 1155
64013 PAU CEDEX, France
Eric.Cariou@univ-pau.fr

ABSTRACT

One of the main goals of model-driven engineering (MDE) is
the manipulation of models as exclusive software artifacts.
Model execution is in particular a means to substitute mod-
els for code. On another way, MDE is a promising discipline
for building adaptable systems thanks to models at runtime.
When the model is directly executed, the system becomes
the model, then, this is the model that is adapted. In this
paper, we investigate the adaptation of the model itself in
the context of model execution. We present a first exper-
imentation where we study the constraints on a model to
be able to determine if it is consistent (that is, adapted)
with an execution environment, possibly including fail-stop
modes. Then, we state some perspectives and open issues
about model execution adaptation.

Keywords: MDE, models@run.time, model execution, adap-
tation, state machines

1. INTRODUCTION

Recently, the broader-scope notions of software adaptation
and self-adaptive software [13] have gained more and more
interest. In [13], the authors list “software engineering” as
the primary “supporting discipline” to construct self-adaptive
software. Despite a wealth of promising research results [4],
authors in [6] claim that the vision of software adaptation,
in the wider area of autonomic computing, remains unful-
filled. Mature software development technologies like MDE
(Model-Driven Engineering) [9] are natural candidates to
create self-adapting applications [7, 8, 16]. This trend is
confirmed by the possibility to manipulate models at run-
time (models@run.time) [1]. Models at runtime are embed-
ded models within the system during its execution. There
are potentially several kinds of usage of models@Qrun.time,
but the main one is to develop adaptive systems. [1], a ref-
erence paper on that topic, even talks only about software
adaptation as application of models@Qrun.time.

Franck Barbier
LIUPPA / Université de Pau
B.P. 1155
64013 PAU CEDEX, France
Franck.Barbler@unlv-
pau.fr

Olivier Le Goaer
LIUPPA / Université de Pau
B.P. 1155
64013 PAU CEDEX, France
Olivier.Legoaer@univ-

pau.fr

Specification of a self-adaptive system traditionally requires
multiple formalisms (Safran [12]): architecture description
languages to describe the structural adaptation of the com-
ponent system, process algebraic languages to describe the
behavior, a set of on-event-do-action rules to describe the
adaptation policy, other ones to express constraints on the
system like the quiescent states and invariants to check the
integrity of the system. With the development of MDE, self-
adaptive systems are more convenient to specify because of
the unified framework brings out by MDE in general (meta-
modeling, model transformation and manipulation). For
instance, [11] defines meta-models for expressing the fea-
tures, context, reasoning and architecture of a system as
support for adapting component-based applications. Using
MDE techniques, we gain in usability as all required software
artifacts are represented under the same form (uniformized
models) and also because some design models can directly
be used at runtime.

System Modification System=exec. model
Modification | : ‘ } Modification A
Representation : : | Representation
! | System=exec. model | | ¥
Model ' ' Model
: Adaptation?
Adaptation? : Adaptation?
' Common
@) Common ) ' () Executed model | (¢) models@run.time
models@run.time adaptation '

on executed model

Figure 1: Adaptation loops

Models@run.time aims then at representing the state of the
system and to express adaptation policies, conditions and
rules on the model instead of on the system directly. The
main problem to face is to be able to maintain a consistent
and causal connection between the system and the model
for the model being a valid representation of the system at
runtime [1, 10, 15]. On another way, one of the main goals of
MDE is to cope with models as final software artifacts. This
can be performed by generating the code from the model or
by directly executing the model itself through a dedicated
execution engine interpreting the model. In that case, the
model is the “code” that is executed. Actually, model execu-
tion is a special kind of models@run.time where the model
is the system that is executed at runtime. Then, there is a
trivial causality between the model and the system as the
model is the system. In that way, the system adaptation



deals straightforwardly with the direct model adaptation,
filling the gap between the system and the model. Figure 1
represents the modification of the adaptation loop in this
new context. With “common” models@run.time (part (a)),
the model represents the system. The reasoning on the adap-
tation necessity is made on the model and the required mod-
ifications are processed on the system. When adapting an
executed model (part (b)), the reasoning is still made on the
model but the required modifications are processed directly
on the model and without needing a representation of the
system.

In this paper, we discuss a first investigation of the adapta-
tion of the model itself in the context of model execution.
As far as we know, there are no other works dealing with
adaptation of executed models as we do. In section 2, we
study a simple example by focusing on the conditions for the
model to be adapted to a given execution context. Then, in
section 3, based on this example, we state some open issues
regarding model execution adaptation.

2. A FIRST EXPERIMENTATION

We have implemented a meta-model for basic state machines
and used it, through a train example, for studying the adap-
tation of a model for an execution environment. Our goal
here is not to express how the model has to be adapted,
that is modified, during its execution, but to determine if it
is suitable for or consistent with a given execution environ-
nement.

2.1 A Running Train Example

The example of this paper is freely inspired of a railway sys-
tem'. The behavior of a train is specified through a state
machine. The train is stopped or is running at a given speed,
depending on the signals along the railway. The environ-
ment of execution is then here the signals that control the
train speed. Concretely, the different speeds of the train are
specified through the states of the state machine whereas
the signals are the events associated with the transitions be-
tween these states. Within the same state machine, we can
specify the behavior of the system (the train) and its inter-
action with the execution environment (the signals). The
verification problem we want to face is in a general way to
be able to determine if the behavior of the system is con-
sistent with the execution environment, that is concretely
here, if any signal is understandable and correctly processed
by the train state machine.

2.1.1 Execution Environments

Three different kinds of environments are considered, for two
different countries. Indeed, a train can cross the border of
its country and can travel on railways of another country
that uses different kinds of signals. The figure 2 shows these
three kinds of signals. The country A uses signals with 3 or 4
different color lights aligned within a single column. The
country A contains two different kinds of railways: Normal

!The state machines of train behaviors and their associated
signals of this paper are not at all intended to be considered
as realistic specification of a railway system. On the con-
trary, we have taken a lot of liberties from real systems and
for concision purpose, train behaviors have been made very
simple.

White
Purple —

<—— Green —>»

<—— Red ——>

— O Q -—— Purple
ey o @

Signals of
© country B

~<—— Amber —> -<—— Green

(a) Normal speed and (b) high speed
signals of country A

Figure 2: Three different kinds of railway signals

speed sections (up to 130 km/h) and high speed sections (up
to 300 km/h). The signal with 3 colors is for normal speed
sections while the signal with 4 colors is for high speed ones.
The meanings of the colors are the following (only one light
is put on at the same time): Red means that the train must
stop immediately, amber expresses that the train must not
run at more that 40 km/h, green means that the train can
run at a normal speed (but not more) and purple that the
train can run at a high speed. In the rest of this paper, we
will consider the specification of a normal speed train (not
able to run at more than 130 km/h) of the country A.

The country B uses for signals a rectangular shape contain-
ing 5 color lights: Red, green, amber, purple and white. For
our example, we consider that signals of the country B are
not known by the train driver but we make the hypothesis
that for each country, colors have similar kinds of mean-
ing: Red is for stop, amber for low speed, green for normal
speed and purple for high speed. However, the white color
has no meaning for the train driver of country A. To be
precise, the maximum speeds associated with each color are
not exactly the same in country B than in country A. This is
why we talk about “similar kinds of meanings” of colors and
not about “exactly the same meanings”. In country B, the
maximum low speed is 30 km/h, the maximum normal speed

is 110 km/h and the maximum high speed is 350 km/h.

2.1.2  Basic Running Train Model

Figure 3, part (a), represents the behavior of a non high-
speed train of country A. The states define the speeds of
the train. For simplifying, the name of a state is the train
speed in km/h associated with this state. 0 and 40 are then
speeds of 0 km/h and 40 km/h, that is the stop state and
the low speed state. When running at a normal speed, the
train driver can choose between two speeds, either 100 or
130 km/h. These two states have been put into a composite
one representing the normal speeds. Transitions between
states are associated with the signal color lights: Red, green
and amber. The purple color is not managed here, as the
train cannot run at more than 130 km/h, but it can run at
100 or 130 km/h on a high speed section.

There are two particular events: int_SpeedUp and int_Speed-
Down. These events are internal actions of the train, that is,
correspond to direct train driver actions. For not confusing
them with the external events coming from the execution
environment, their name is prefixed by “int_”

The presented state machine seems to be a relevant speci-
fication of the train behavior. But the next section shows



Normal |
o ) Amber m Green int_SpeedUp
_
Red “— Amber int_SpeedDown

Green

(a) Basic train state machine

Purple
Red Green

Red Amber Purple Normal ‘

int_SpeedUp vy
_ 130 | (H)

Amber Green

0 | | 40
Red " Amber

int_SpeedDown

Green 4\

Purple
(b) Enhanced train state machine: Explicit management of all events

<<stop>> Red <<normal>> Green

<<stop>> <<low>> Amber
Red <<normal>> Normal |

e <<low>> <<normal>>
Q Green .
<<stop>>} Amber {<<low>>| int_SpeedUp @
=
) <<stop>> 40 J™ cciow>>
Red

Amber int_SpeedDown

o

<<normal>> Green 4\

(c) Enhanced train state machine: Explicit management of all kinds of events

Figure 3: Train state machine variants

that, in order to ensure or check the consistency of the state
machine against an execution environment, this is not the
case. The main problem is the implicit elements embedded
in the model.

2.2 Fitting an Execution Environment

2.2.1 Rigorous Model Definition

The problem of the state machine of the figure 3, part (a),
is all the implicit it contains. Indeed, the defined transi-
tions deal only with events that change in effect the state
of the model. For instance, if the current active state is
the 40 km/h speed (the low speed state), the red event and
the green event make the model evolving respectively to the
0 km/h (stop) state and to the normal composite speed
state. The associated transitions are then present on the
model. If an amber event occurs, as no transition is defined
for this event starting from the low speed state, we stay in
the low speed state. This is the expected behavior but this
is implicitly defined.

According to our problematic, the main problem with an
implicit management of events is related to the consistency
of the model against a new execution environment. As said,
the white event in signals of country B is not known by
the train driver. What happens if such a white signal oc-
curs when the train is running on railways of country B?
Nothing, it is ignored. Of course, ignoring systematically
an unknown signal is not a correct behavior. As a solution,
a rigorous definition of the model is required: All expected
interactions with the execution environment must be explic-
itly managed. The goal is to be able to make the difference
between an unknown interaction or an expected one even if
it does not change currently the state of the model. In term
of verification purpose, this has a very interesting conse-
quence: If these interactions compose a finite set (as for the
3, 4 or 5 colors for signals), it is then possible to statically

determine if a given model is consistent with or adapted to
an execution environment.

Concerning the train model, these interactions are the set of
expected signal colors. There are several ways to ensure that
a given signal occurrence is an expected one. A first solution
is to parameterize the execution engine with this set and to
check, before processing a signal (an event occurrence), that
it belongs to this set. The problem is that it requires to
modify the execution engine to carry out this verification in
addition to the model execution. Another solution, avoiding
this problem, is that all expected events (except the inter-
nal ones) must be associated with a transition starting from
each state of the state machine (if a state is embedded in
a composite, this transition can start from the composite).
The goal is that each event occurrence is systematically and
explicitly processed by the state machine. If, for a given
state, an event does not make the model evolving, that is
the current active state remains the same, the associated
transition simply starts from this state and leads to itself2.
For such self-transitions on composite states, there is a sim-
ple solution for keeping the internal current active states.
The first thing is to put an history state inside each com-
posite state (including those contained in other composite
states). Then the self-transition for a composite state has
for target state its history state, making its whole internal
active state hierarchy not changing.

Figure 3, part (b), shows the modification of the train state
machine following these rules of rigorous modeling. One can
notice that for each state, there is a transition associated
with each one of the four color events. In term of adaptation,
we can know that the new train state machine is consistent
with a high speed section of country A as the four colors
are processed for each state but not with the railways of
country B as the white color is not processed for all states
(actually for none, but only one missing transition from one
state is enough to conclude that the model is not adapted).

2.2.2 Definition of “kinds” of Elements

Ensuring that the environment interactions are processed by
the model is not sufficient. It is necessary in addition to en-
sure that they are correctly processed. In a general way, it
is of course not an easy task but with state machines and
for the train example, there are some possible and simple
verification actions. We can notably check if a given event
occurrence processing leads to activate a specific expected
state. For instance, if the red event occurs, the state ma-
chine must be in the 0 km/h speed (stop) state. This is
the case for all the transitions associated with the red event,
independently of their source state. Here also, we can stati-
cally verify that each transition associated with a given event
leads to the correct state.

However, this verification can be too strong. Sometimes, it
will be simply required to ensure that a kind of state (here
a kind of speed) has been reached. This can be achieved
by a composite state embedding several speeds, as for the
normal state and its 100 and 130 km/h speed states. But

2If business operations are associated with the states, for
these particular transitions, a system avoiding the execution
of such operations has to be added because these transitions
are not business ones but are here for checking purpose.



this solution is not adapted to manage a new environment
of execution. If we take the low speed for countries A and B,
they are not the same (40 km/h in A and 30 km/h in B).
However they are sufficiently close to be considered as sub-
stitutable. Defining a composite state containing both 30
and 40 km/h speed states will not work. Indeed, when the
amber event occurs, it can lead to only one state (through a
direct transition inside the composite or indirectly via its ini-
tial or history state): Either the 30 or the 40 km/h. Without
structurally modifying the transitions of the state machine,
it is not possible to ensure that in A a transition associated
with an amber event leads to the internal 40 km/h speed
state and in B to the internal 30 km/h speed state. A clever
solution is to be able to define that the two states belong
to the kind of low speed states and to verify that an amber
event leads to a kind of low speed state and not anymore to
the exact 30 or 40 km/h speed state. Then, defining kinds
of states is useful, but defining “kinds” of other elements can
also be useful. For instance, we can define a kind of normal
speed signal enclosing both green (normal speed) and purple
(high speed) events®.

Figure 3, part (c), is the modification of the train state ma-
chine model including kinds of elements. Each state or event
is tagged following the << ... >> UML stereotype notation.
Now, we can check that each kind of event leads to a kind of
state with the same tag (having the same tag between states
and events is of course a choice and not mandatory). For
instance, each transition leading to the kind of <<low>>
speed state (the 40 km/h state) is associated with an event
of the kind of <<low>> signal (the amber color). One
can notice that transitions associated with the purple event
have disappeared. Indeed, they are now embedded within
the kind of normal speed events. To be precise, we have a
mix of two levels of specification: Either the element (state
or event) is present with its exact value (the 40 km/h state
or the amber event for instance) or through its kind (kind
of normal event for the purple event for instance).

In term of verification, compared to the previous state ma-
chine specification (figure 3, part (b)), now we can ensure
that in B, the amber event (or any kind of low speed event)
is correctly managed by leading to a kind of low speed state,
even if is not the exact expected speed of B. Of course, this
requires that there exists a common knowledge between the
execution environments of A and B. It must be set that a
difference of 10 km/h for a low speed is acceptable. In a gen-
eral way, we can consider that the normal speed train state
machine for the country A (the one of figure 3) is a fail-soft
version of a reference state machine of the country A high
speed trains or of the trains of country B (if we except the
white color signal not managed by the state machine).

2.2.3 Multi-Level Classification of Adaptation

Based on the above discussions, we can define a hierarchy of
verification. As there are two classifications of knowledge on

3The easiest way to generalize the notion of “kinds” for any
element is to automatically add on the considered meta-
model a single abstract element containing an elementKind
string attribute, and to make all elements of the meta-model
specializing it directly or indirectly. Each element can then
be tagged for expressing it belongs to a given kind of ele-
ment.

behavioral elements (the states) and interactional ones (the
events), this lead to four combinations defining a hierarchy
of consistency of a model against an execution environment.
Table 1 details these combinations. The strongest verifica-
tion is when there is an exact knowledge for behavioral and
interactional elements. In this case, the model is considered
as a reference model for this execution environment. The
weakest is when the verification is based on the kinds for all
elements. In this case, the model is a fail-soft behavior for
a close execution environment.

2.3 Implementation

For simplified state machines, we have implemented an ex-
ecution engine in Kermeta? and defined adaptation con-
tracts®. These adaptation contracts are based on previ-
ous works on execution and transformation contracts [2, 3].
Their goal is to ensure that a model is adapted to a given
execution environment (through the verification of process-
ing only expected events), following the classification of the
section 2.2.3. The verification can be made statically, that
is before executing the model. In this case, the contracts
are embedded in OCL constraints that are checked on the
model. At runtime, the verification is made within the pre-
condition of the Kermeta operation that processes an event.

3. CHARACTERIZATION & DISCUSSION

Based on previous sections, we discuss here the characteriza-
tion of the adaptation of executable models and associated
open issues.

3.1 Executable Adaptable Models

As stated by previous works, such as [2, 5], an executable
model has the specificity to contain elements allowing to rep-
resent its state during its execution. Concretely, it is a sup-
port capable of discrete and traceable evolution. For a state
machine, in addition to its static or structural elements (its
states and transitions) it is then required to also establish
at a given time what are the current active states through
dynamic elements defined in the meta-model (these dynamic
elements being not defined in the UML 2.0 state machines
specification, an extension of the UML meta-model is neces-
sary, as proposed in [2]). The execution engine embeds the
operational semantics of execution for a given meta-model
(for instance, how to process the transitions for event occur-
rences). It is also possible to ensure that a given execution
semantics is respected, typically with execution contracts [2].

When adapting a model during its execution, this model
must basically be an executable model. In addition, it has
to respect some others characteristics. As shown before, an
adaptable model must be designed for being able to repre-
sent simultaneously the behavior of the system and as much
as possible the interactions with the execution environment.
In other words, it must also include the specification of the
execution environment. So, how to represent an execution
environment? Concerning our example, it was done in a sim-
ple manner through events of the state machine, even if we

4h'ctp ://www.kermeta.org

5Due to lack of place, we can not put some code excerpt
or OCL constraints, but the engine and the contracts are
available online:
http://web.univ-pau.fr/%7Eecariou/adapt-contracts/



Exact behavior

‘Weak behavior

Exact interaction

environment.

The exact behavior is valid for this exact environ- | A fail-soft behavior is valid for a precise execution
ment. This is a reference model for this execution | environment.

‘Weak interaction

cution environment.

The model behavior is directly valid for a close ex- | A fail-soft behavior is valid for a close environment
ecution environment compared to the reference exe- | compared to the reference execution environment.

Table 1: Four adaptation combinations

had to distinguish external events from internal ones. Pos-
sibly, the specification of the interaction environment can
be specified in another model or be the parameterization of
the execution engine but it must be made explicit for being
able to differentiate an expected interaction from an unex-
pected one. As explained in the next section, executable
adaptable models can also embed dedicated properties and
values for adaptation management, mostly as in common
modelsQ@run.time.

In common models@run.time, models are designed to ex-
actly and only represent what is required to carry out the
system adaptation. The contents of these models are then
different from the adaptable executable models that are exe-
cutable models augmented with a content dedicated to man-
age the adaptation.

3.2 What means Adapting a Model?

In this paper example, the consistency of a model against an
execution environment is discussed. We are able to deter-
mine if we face up an unexpected interaction, but of course,
an adaptation decision has to be taken in this case. Con-
cretely, what must be done if the unknown white signal is
crossed by the train of the country A7 Here are three exam-
ples of what can be an adaptation decision. First solution,
the execution of the model is voluntary stopped: The execu-
tion engine does not know how to manage this interaction,
so, it stops. The second solution is to determine, thanks to
properties associated with this interaction, in which envi-
ronment we are, and then, to load a reference model for this
environment and to execute it. The last possibility is still
depending upon properties associated with this interaction
and consists in modifying, if possible, the current model to
take into account the new discovered interaction.

For the train example and the proposed state machine exe-
cution engine, the first solution is applied. The main reason
is that we do not yet know what are the kinds of properties
that can be attached to the interactions. Intuitively, such
a property associated with a color of signal could be the
speed (or a range of speeds) the train has to deal with when
crossing this signal. Then, concerning the modification of
the model, it will be possible to know if there is already a
state compatible with the expected speed or if a new state
for this speed has to be added to the model. Finally, tran-
sitions associated with this new color event can be added
outgoing from each state and incoming to this state.

In a more general way, the problem is to define and to inte-
grate within the executable model more generic and detailed
properties for both specifying the system and the interaction
environment for adaptation purposes. This can of course be

based on previous works on adaptation, such as [7] which
defines a generic meta-model for specifying properties and
associated rules depending on their values. The properties
can also deal with QoS parameters and values.

3.3 Levels of Adaptation Policies

Based on the intuitive idea that crossing an unknown signal
requires for the train to stop, one can ask why the execution
of the model is stopped when an unexpected event occurs
instead of stopping the train by activating its “stop” state?
The reason is that these two adaptation choices are not at
the same level. The engine is dedicated to the execution of
state machines based on a given meta-model and its opera-
tional semantics. It is not dependent on the business con-
tents of the models, it can execute indifferently any model.
However, activating the stop state of a model is dependent of
the model contents as it requires to know that there exists
such a state. In addition, it also requires to parameterize
the engine to force a transition to this state in the case of
an unexpected event. This adaptation policy is defined at
the model level as it depends on the business contents of the
model.

There are also adaptation policies defined at the meta-model
level, e.g. the engine’s stop action or the modification of the
model based on properties of interactions. Such adapta-
tions are generic and can be automatically processed on any
model. They applied at the domain level, in the sense that
a meta-model is dedicated to represent a domain as in the
DSL (Domain Specific Language) acronym.

There exists a third level of adaptation policies: Those who
apply on the execution engine itself. For instance, when the
train of A runs on the railways of B, the verification of ex-
pected signals or speeds must be made in a fail-stop mode
instead of an exact one. Then, when the train cross the bor-
der, the verification policy processes by the engine has to be
changed. In the same way that the semantics of adaptation
can be changed, we can imagine that the operational seman-
tics processed by the execution engine can also be modified
during the execution. Such adaptation or execution policies
have to be chosen among a set of already defined ones. Then,
this third level of adaptation policies deals with a semantics
level.

To sum up, adaptation policies can be expressed at three lev-
els: Business level (depending on the contents of the model),
domain level (defined at the meta-model level) and seman-
tics level (applying on the adaptation and operational se-
mantics processed by the execution engine).



3.4 Models@run.time on Executable Models

As seen, models in the context of models@run.time are dif-
ferent in content and goal compared to executable adaptable
models. However, the interests of the former are to be ex-
plicitly designed for adaptation management. Such models
are dedicated to only represent what is required, abstracting
away concerns and details not relevant for the adaptation.
The drawback is that a causal link between the model and
the system has to be established and maintained. This link
is not anymore present when directly adapting an executable
model but this kind of model could sometimes be too com-
plex or not well structured for easily expressing the reasoning
on adaptation. Indeed, it embeds several concerns within a
same model: The business content, elements allowing to ex-
ecute the model and other ones such as those dedicated to
the adaptation processing. To manage this complexity, why
not representing on a distinct model only the required infor-
mation for the adaptation? This will lead to apply common
models@run.time techniques on a system that will be an
executable adaptable model (figure 1, part(c)).

3.5 Self-* properties

In this paper, we discuss adaptation in relation with chang-
ing execution environments. There exist other kinds of adap-
tation, such as the self-* properties (self-healing, self-optimi-
zing, ...). It will be of course interesting to investigate the
adaptation of an executable model for ensuring these prop-
erties.

4. CONCLUSION

MDE is a promising discipline for building adaptable sys-
tems. This comes from the ability of having models at run-
time representing the system state (intelligible context) dur-
ing its execution. When a model is executable, the system
becomes the model that is executed, and then, system adap-
tation becomes model adaptation, fully filling in that way
the gap between the system and the model. In this paper,
as a first experimentation on the adaptation of model ex-
ecution, we investigated how to determine that a model is
consistent (that is, adapted) with an execution environment,
possibly including fail-soft modes. Then, we made a short
characterization of these adaptable executable models and
stated some open issues on how to realize adaptation of such
models.

The perspectives are the definition of techniques for adapt-
ing a model (adaptation policies at the business, domain and
semantics levels) including self-* properties assurance. Con-
cretely, as in common models@run.time, it is still required to
execute a control loop, such as the collect/analyze/decide/act
loop of [4], even if this loop could have a different content
in this particular context of model execution. In a more
general way, it will be interesting to compare model exe-
cution adaptation characteristics with other adaptation ap-
proaches using for instance the evaluation framework of [14].
This covers to study the limits of directly adapting a model
execution versus applying common models@run.time tech-
niques on it. We also need to develop more realistic and
complex case studies and to study the adaptation of other
kinds of executable models in addition to state machines as
we do currently. But, as a conclusion, we believe that the
adaptation of model execution will be an useful complemen-
tary approach to common models@Qrun.time.

5. REFERENCES

[1] G. S. Blair, N. Bencomo, and R. B. France.
Models@run.time. IEEE Computer, 42(10):22-27,
20009.

[2] E. Cariou, C. Ballagny, A. Feugas, and F. Barbier.
Contracts for Model Execution Verification. In
ECMFA ’11, volume 6698 of LNCS. Springer, 2011.

[3] E. Cariou, N. Belloir, F. Barbier, and N. Djemam.
OCL Contracts for the Verification of Model
Transformations. In OCL Workshop at MoDELS
2009, volume 24. EC-EASST, 2009.

[4] B. H. C. Cheng, R. De Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo,

Y. Brun, B. Cukic, and et al. Software Engineering for
Self-Adaptive Systems: A Research Roadmap.
Software Engineering for SelfAdaptive Systems,
5525(08031):1-26, 2009.

[5] B. Combemale, X. Crégut, P.-L. Garoche, and
T. Xavier. Essay on Semantics Definition in MDE —
An Instrumented Approach for Model Verification.
Journal of Software, 4(9), 2009.

[6] S. Dobson, R. Sterritt, P. Nixon, and M. Hinchey.
Fulfilling the Vision of Autonomic Computing. IEEE
Computer, 43(1):35-41, 2010.

[7] F. Fleurey and A. Solberg. A Domain Specific
Modeling Language Supporting Specification,
Simulation and Execution of Dynamic Adaptive
Systems. In MODELS ’09, volume 5795 of LNCS.
Springer, 2009.

[8] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen,

K. Lund, and E. Gjgrven. Using Architecture Models
for Runtime Adaptability. IEEE Software,
23(2):62-70, 2006.

[9] R. France and B. Rumpe. Model-driven Development
of Complex Software: A Research Roadmap. In
FOSE ’07. IEEE Computer Society, 2007.

[10] G. Lehmann, M. Blumendorf, F. Trollmann, and
S. Albayrak. Meta-Modeling Runtime Models. In
Models@run.time Workshop at MoDELS 2010, volume
6627 of LNCS. Springer, 2010.

[11] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and
A. Solberg. Models@Run.time to Support Dynamic
Adaptation. IEEE Computer, 42(10):44-51, 2009.

[12] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,

G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An Architecture-Based Approach to
Self-adaptive Software. IEEE Intelligent Systems,
1999.

[13] M. Salehie and L. Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans.
Auton. Adapt. Syst., 4:14:1-14:42, 2009.

[14] N. M. Villegas, H. A. Miiller, G. Tamura, L. Duchien,
and R. Casallas. A framework for evaluating
quality-driven self-adaptive software systems. In
SEAMS ’11. ACM, 2011.

[15] T. Vogel and H. Glese. Language and Framework
Requirements for Adaptation Models. In
Models@run.time Workshop at MODELS 2011, 2011.

[16] J. Zhang and B. H. C. Cheng. Model-based
development of dynamically adaptive software. In
ICSE ’06. ACM, 2006.



