
Bridging KDM and ASTM for Model-Driven Software Modernization

Gaëtan Deltombe
Netfective Technology Software

32, avenue Léonard de Vinci
33600 – Pessac, France

g.deltombe@netfective.com

Olivier Le Goaer, Franck Barbier
University of Pau

Avenue de l’université
64000 – Pau, France

{olivier.legoaer, franck.barbier}@univ-pau.fr

Abstract

Standardizing software modernization techniques has
lead to the KDM (Knowledge Discovery Metamodel). This
metamodel represents several application aspects (code, ar-
chitecture, etc.), while transforming them into renewed ver-
sions. On the other hand, ASTM (the Abstract Syntax Tree
Metamodel) has been recently released. It focuses on the
parsing of text-based files written in a given language. In
practice, KDM and ASTM are intended to be used jointly
when modeling source code with formal links to other soft-
ware features like components, user interfaces, etc. How-
ever, the link between ASTM and KDM is often fuzzy, or
even unestablished since KDM is in charge of synthesizing
all captured software artifacts. This has negative effects on
the attainable level of automation and on the completeness
of a software modernization project. To overcome this limi-
tation, this paper introduces SMARTBRIDGE as a means to
reconcile both standards.

1. Introduction

Modernization is at the heart of many software organiza-
tions that seek to migrate from obsolete or aging languages
and platforms to more modern environments. Moderniza-
tion projects have historically focused on transforming tech-
nical architectures; that is, moving from one platform to an-
other and / or from one language to another [2]. This is
achieved through code translation or various refactoring ex-
ercises such as restructuring, data definition rationalization,
re-modularization or user interface replacement.

Meanwhile, model-driven development (MDD) is gain-
ing increasing acceptance; mainly because it raises the
level of abstraction and automation in software construc-
tion. MDD techniques, such as metamodeling and model
transformation, not only apply to the creation of new soft-
ware systems but also can be used to help existing systems
evolve [7, 1]. These techniques can help reduce software

evolution costs by automating many basic activities, includ-
ing code manipulation.

There is currently great activity addressing model-driven
modernization issues, for which the OMG’s task force on
modernization [16] plays a major role. It aims at making
precise inventories of various kinds of legacy artifacts in or-
der to propose more or less automatic model-driven migra-
tions of applications by means of interoperable tools. This
way, all discovered artifacts are considered as full-fledged
models. This is an important shift compared to classical ap-
proaches, which do not consider abstract representations as
perennial and reusable assets.

The context of this paper is rooted in the research work
conducted by the European REMICS (www.remics.eu)
project [11]. This project seeks an end-to-end model pro-
cessing chain to transform legacy applications/information
systems into services in the Cloud. Several modeling lan-
guages are operated in the project, within both reverse and
forward engineering activities. To define and support this
chain in tools, modeling language semantic gaps must be
fulfilled. More specifically, the reverse engineering activ-
ity must be committed to go from the source code towards
technologically-neutral UML models, which can then be
consumed by a wide range of third-party MDD tools. The
forward engineering activity starts from UML models and
next uses SoaML (www.soaml.org) and CloudML (a forth-
coming OMG standard that is currently specified within
REMICS). So, between reverse and forward, a suite of mod-
els conforming to (i.e., instances of) OMG standard meta-
models are involved, each aiming at representing the initial
source code at different levels of abstraction, along with var-
ious refinements/quality levels [8]. The general idea is that
a portfolio of metamodels and transformation chains are
pre-implemented in a tool to support an intelligible seam-
less reverse and forward engineering process. Because of
its industrial impact, REMICS complies to worldwide stan-
dards. Nonetheless, these standards lack large-scale exper-
imentation, thus requiring adaptations in their core to re-
ally achieve a high degree of automation when targeting a

1



Legacy2Cloud logic. In this scope, this paper stresses re-
verse engineering activity, by showing and illustrating how
modeling language can be rationally treated.

In reverse engineering, top-down approaches promote
a recovery process that is conducted through architectual
knowledge. On the other hand, bottom-up approaches
[4] are more pragmatic, since reverse engineering activ-
ities lean on source code that is undoubtedly the most
rich, self-contained and straightforwardly available mate-
rial. REMICS focuses on the latter due to the dispersion,
or even absence of knowledge. So, model transformations
amount to inferring such knowledge from model details and
from the expressiveness of their associated modeling lan-
guages. Risks occur when the knowledge in models has to
move from one language formalism to another. For turn-
ing code written in a given programming language into a
language-agnostic model, the OMG’s task force on mod-
ernization puts forward two metamodels: the ASTM [13],
which is a metamodel dedicated to syntax trees, and the
KDM [12], which is a more global metamodel where the
sub-parts deal with a wider spectrum of program-level el-
ements (i.e., user interfaces, data, functions/services, run-
ning platform). Unfortunately, KDM and ASTM are not
clearly linked to each other. They aim at being complemen-
tary but practice shows an unsound, ill-formalized depen-
dency between them. To bridge this gap, this paper dis-
cusses, develops and illustrates an intermediary metamodel
called SMARTBRIDGE, which allows a roundtrip relation-
ship between KDM and ASTM and hence supports multiple
iterations during the reverse engineering activity.

The remainder of the paper is organized as follows: in
Section 2 we describe the motivations and the various spec-
ifications that gave birth to KDM and ASTM respectively.
The SMARTBRIDGE is then detailed in Section 3, including
an enumeration of the metaclasses and metarelationships in-
volved in the junction of ASTM and KDM. To make these
ideas more concrete, we provide in Section 4 a demonstra-
tion of SMARTBRIDGE on a tiny COBOL snippet. Section
5 gives an overview of the related works on model-driven
modernization. We conclude this paper in Section 6.

2. Problem of Interest

Recently, MDD standardization has stressed moderniza-
tion with the special objective of providing new concepts,
tools and processes when moving legacy software to re-
newed applications/information systems running on top of
the most up-to-date technologies. The idea behind that is to
switch between different technical spaces [10] by underesti-
mating the purely ”grammarware” approach in favor of the
”modelware” approach. Beyond traditional code-to-code
approaches, model-centric approaches are those promoted
by MDD in general: (a) conformance to well-defined meta-

Application
Src code

SASTM
model

GASTM
model

KDM
model

P T T

ASTM model

P TModel
(conforms to a metamodel)

Parser
(injector/discoverer)

Transformation
(Model-to-model )

Figure 1. Reverse Engineering process ac-
cording to the OMG’s task force on modern-
ization.

models, (b) powerful transformation techniques, (c) easier
integration of various concerns. Standards in this area also
emphasize wider interoperability. In this case, standard-
compliant models should be exchangeable between tools in-
volved in the migration chain. These tools process software
elements having different shapes. These shapes include
the lowest levels (code), as well as the highest: business
rules process extraction and interpretation, dealing with the
software architecture and components, exhibiting services
(business functionalities), etc.

2.1. MDD-based Reverse Engineering

A modernization process encompasses two stages: re-
verse engineering and forward engineering. The for-
ward engineering stage starts from a Platform-Independent
Model (PIM) that serves as the basis for code generation.
The reverse engineering stage extracts elements from legacy
code and data description, rendering them into a Platform-
Specific Model (PSM). KDM is the support candidate for
representing PSMs by using ASTM as sub-support for the
precise and comprehensive representation of a software sys-
tem. The creation of PIMs (or technology-neutral models)
is favored by the construction of formal mappings between
KDM/ASTM on one side and UML (for PIMs) on the other
side. More generally, metamodeling fosters the description
of discrete steps to show how, at the very beginning, the
rough code may be interpreted and analyzed in terms of ar-
chitectural incidence: operating system adherences, busi-
ness value discovery strategies, etc.

In this article, KDM is the pivot metamodeling language
for representing entire enterprise software systems; includ-
ing source code of course, but not exclusively. As a com-
mon intermediate representation for existing software sys-
tems, KDM is a good support for refactoring, the derivation
of metrics and the definition of specific viewpoints. Figure
1 depicts the full reverse engineering process promoted by
MDD modernization standards.

2



Figure 2. KDM consists of 12 packages ar-
ranged into 4 layers

2.2. MDD technologies for modernization

The concomitant use of KDM and ASTM requires a
clear understanding of their current capabilities.

2.2.1 Knowledge Discovery Metamodel (KDM)

The architecture of KDM is arranged into four layers,
namely the Infrastructure Layer, Program Elements Layer,
Runtime Resources Layer and Abstractions Layer (Figure
2). Each layer is dedicated to a particular viewpoint of an
application. In this paper we are only interested in the two
main layers: the Runtime Resources Layer and the Program
Element Layer. These layers allow one to represent the user
interfaces, data and code of the legacy application.

The KDM Runtime Resources Layer The Runtime Re-
source Layer is composed of several packages (Data, UI,
Event and Platform). However, we will concentrate on
the Data and UI packages herewith. The first one is used
to represent the organization of persistent data, especially to
describe complex data repositories (e.g., record files, rela-
tional schemas, . . . ). The second one is used to represent the
structure of user interfaces and the dependencies between
them in terms of interactions and sequences.

The KDM Program Elements Layer Special attention
is paid to the Program Elements Layer, whichis concerned
with program-level artifacts. The Program Elements Layer
is composed of the Code and Action packages. The
Code package represents programming elements as deter-
mined by programming languages (data types, procedures,
classes, methods, variables, etc.), while the Action pack-
age describes the low-level behavior elements of applica-
tions, including detailed control and data flows resulting

from statement sequences. In this scope, KDM is recog-
nized as a way of representing the source code, if only at
the execution flow level.

2.2.2 Abstract Syntax Tree Metamodel (ASTM)

As a complement, ASTM has been developed in accor-
dance with the theory of languages to support the repre-
sentation of source code. In fact, ASTM is composed of
the GASTM (Generic Abstract Syntax Tree Metamodel),
a standardized language-independent metamodel and the
SASTM (Specific Abstract Syntax Tree Metamodel), a
user-defined metamodel closely connected with a particu-
lar language (Java, COBOL and so on).

Generic Abstract Syntax Tree Metamodel (GASTM)
GASTM enables the representation of the code without any
language specificity. GASTM contains all of the common
concepts of existing languages in the form of metatypes.
Parsing some files means instantiating these metatypes
along with creating links in order to model semantic de-
pendencies between text pieces. The goal of GASTM is to
provide a basis for SASTM in order to later help users to de-
fine the domain-specific features of the code to be parsed.
The key achievement is to avoid an unintelligible separation
(especially in terms of representations) between the generic
and specific characteristics of the code. Besides, the (anno-
tated) distinction in models between generic versus specific
parts, is highly valuable at processing time (see below).

Specific Abstract Syntax Tree MetaModel (SASTM)
SASTM is constructed through metatypes/metarelation-
ships on the top of GASTM. This task is assigned to ASTM
practitioners. It first leads to constructing a metamodel from
scratch that is compatible with the legacy language/technol-
ogy to be dealt with. The main goal of SASTM is to rep-
resent code peculiarities. Next, parsing the code amounts
to distinguishing between generic and specific aspects, and
thus instantiating GASTM or SASTM. The formal interre-
lation between the two metamodels ensures that models (or
their respective instances which represent a given business
case) are also consistently linked together based on (fully
explicit) comprehensive links.

2.3. Realizing modernization

OMG provides a set of standard specifications for soft-
ware modernization but fails to provide a guideline for the
practitionners. As such, we experimented on the aforesaid
technologies while endeavoring to adhere to the – somewhat
idealized – process depicted in Figure 1.

3



2.3.1 Complementarity of MDD technologies

The complementarity of KDM and ASTM resides in the
possible code level representations and the different opera-
tions that can be applied. On one hand, ASTM permits one
to represent a given code source at procedure level, in the
form of a syntax-tree whose production has involved a user-
defined SASTM: code specificities are taken into account.
On the other hand, KDM is used to represent the code at
flow level (e.g., data inputs, data outputs, sequences). In
fact, a flow level representation provides a direct support
for flow analysis and the refactoring strategies thereof. In
addition, any reverse engineering process relying on KDM
models is reusable, whatever the source technology may be.
So, ASTM deals with common parsing issues, while KDM
deals with another viewpoint; thus creating the link with
other facets like user interfaces, components and so on.

2.3.2 Discretization of the process

The modernization process proposed in this paper is divided
into three codified steps:

1. The first step consists in the abstraction of data, code
and user interfaces from the legacy material. This is
transformed into several technology-specific models.
Practically speaking, for each artifact we define its own
parser. The parsing outputs are concrete syntax trees
(CSTs). Next, these CSTs are transformed into ASTs,
each conforming to predefined SASTM metamodels.
Starting from chunks of text and ending up as mod-
els, this global process is often called ”Injection” in
the MDD jargon.

2. This second step consists in the transformation of
SASTM models into KDM models, with respect to
user interfaces, data and code packages. The goal of
this model transformation is to eliminate all techno-
logical specificities of the input code model. For that
purpose, a reformulation is sometimes required.

3. The third step consists in transforming the code-related
and data-related KDM models into UML models, thus
generating models in a widely accepted format with
their associated graphical notation. There are no tech-
nical difficulties except that of choosing between the
(existing) concurrent UML-like Java representations
that are tolerated by today’s modeling tools.

2.3.3 Current limitations

Our experience has led us to conclude that a moderniza-
tion project is not a straightforward process, but instead a
strongly iterative process, including the re-examination of
the models’ parts and their mutual enrichment. We thereby

advocate roundtrip capability as to enable information ex-
change and knowledge propagation within the process, at
any level or step. At least two reasons explain this.

First, real modernization requires incorporating addi-
tional or derived knowledge into models, either automati-
cally or manually. The most prominent examples are the
following:

• Detection of code patterns. The purpose is to recog-
nize sets of object codes that will facilitate refactor-
ings, especially when targetting a completely new ar-
chitecture.

• Determination of components fate (and the traceability
thereof). In accordance with application experts, the
purpose is to stamp components that will be migrated
and those that will be instead replaced by off-the-shelf
components.

• Extraction of business rules. The purpose is to gain a
better comprehension of the business logic that under-
lies a huge amount of lines of code.

• Multi-view modeling. The purpose is to set up the right
semantic relationships between the interrelated views
of the system that is being reversed (such as user inter-
face, business code and those data structures used for
persistence).

Secondly, the strict discretization of the modernizing
process envisioned by OMG is not realistic when aim-
ing at providing a modernization CASE tool with a good
user-experience level. Indeed, the way a user perceives
the computer-aided modernization is an important question,
from a tooling viewpoint. Typically, the new knowledge
must be impacted to the code model and showed to the
user. Thus, some code blocks within a code editor will be
highlighted as patterns, while some others will be tagged
as “to be replaced”, etc. In other words, the new knowl-
edge derived from the KDM-level must be brought up to
the ASTM-level.

3. Proposed research

The observations above stress the necessity to take ad-
vantage of the two worlds, while providing roundtrip ca-
pability. This means preserving the support for architec-
ture, data, user interfaces (even metrics) that is provided
by KDM; as well as achieving the level of details allowed
by ASTM. Therefore, we suggest that ASTM and KDM
could be interrelated thanks to a bridge that we have dubbed
SMARTBRIDGE. This bridge will ensure inter-relationships
as well as intra-relationships. The former deal with links
between two distinct metamodels: KDM and ASTM. The

4



latter deal with links between the layers that belong to the
KDM metamodel itself.

Building SMARTBRIDGE has led us to focus on three
important features:

1. interfacing KDM and ASTM via joint points

2. ensuring navigability between them

3. mapping the different KDM layers: code, data and user
interface

3.1. Interfacing

The linkage between the low level code representation
allowed by ASTM and the more abstract level allowed by
KDM is not natively provided. To overcome this issue,
SMARTBRIDGE interposes a number of meta-classes that
are showed in table 1.

ASTM SMARTBRIDGE KDM
TypeDefinition EDataType DataType
DataDefinition EDataElement DataElement
TypeDeclaration EDataType DataType
AggregateTypeDefinition EDataType RecordType
AggregateTypeDeclaration EDataType RecordType
FunctionDeclaration EControlElement CallableUnit
FunctionDefinition EControlElement CallableUnit
VariableDeclaration EDataElement StorableUnit
VariableDefinition EDataElement StorableUnit
Statement EActionElement ActionElement

Table 1. Meta-classes for interfacing ASTM
and KDM

Achieving this interfacing calls for an extension point.
It turns out that such an extension point was provided
in the KDM specification by way of the meta-class
CodeElement which belongs to Code package. Figure
3 shows how SMARTBRIDGE exploits this extension point
in order to introduce the required metaclasses to bridge to-
ward ASTM.

Based on the KDM CodeElement meta-class,
SMARTBRIDGE defines several meta-classes which
are sub-classes of EElement. These meta-
classes are ECodeElement, EActionElement,
EDataElement, EControlElement and
EDatatype. Figure 4 presents an interfacing ex-
ample between an ASTM Statement and its KDM
corresponding representation.

3.2. Navigability

We decided to provide a bidirectional navigation capa-
bility between KDM and ASTM in order to be able to ob-

SMARTBRIDGE

ecode
(SMARTBRIDGE)

EControlElementEActionElementECodeElement EDataElement EDataType

EElement

code
(KDM)

CodeElement

Figure 3. CodeElement extension point

SMARTBRIDGE

ecode
(SMARTBRIDGE)

EActionElement

EElement

code
(KDM)

CodeElement

Statement
(ASTM.Syntax)

Statement

Figure 4. EActionElement meta-class

tain an ASTM code representation from an abstract code el-
ement representation, and conversely. The navigability im-
plemented in SMARTBRIDGE is inspired by the relationship
mechanism used in the KDM specification [12]. The KDM
code package provides a natural extension point for this re-
lationship mechanism through the CodeRelationship
meta-class (Fig. 5). SMARTBRIDGE specializes this ex-
tension point in two metaclasses: ERelationship and
EAggregateRelationship.

3.2.1 ERelationship

The ERelationship meta-class defines the navigability
between KDM meta-classes and the SMARTBRIDGE meta-
classes. An ERelationship instance is used in order
to navigate from a KDM CodeElement to a SMART-
BRIDGE EElement and vice versa. This relationship is ex-
clusively used for a one-to-one relationship, like a function
representation (ASTM FunctionDefinition), which
corresponds exactly to one abstract representation (KDM
CallableUnit).

5



3.2.2 EAggregateRelationship

The EAggregateRelationship meta-class defines
the navigability one-to-many between a KDM element and
many SMARTBRIDGE elements. This one-to-many rela-
tionship is useful in order to represent KDM abstract ele-
ments (like KDM ActionElement) using many concrete
ASTM ones (like Statement metatype).

SMARTBRIDGE

SMARTBRIDGE::ecode

EAggregateRelationship

ERelationship

EElement

code
(KDM)

CodeRelationship

1..*

Figure 5. CodeRelationship extension point

3.3. Mapping

The need to provide a mapping between the type defini-
tion contained in the legacy source code and the data def-
inition in a database or in the user interface is extremely
strong. The KDM meta-model does not provide the con-
cept of specific mapping between the different layers: code,
data and user interface. For this reason SMARTBRIDGE in-
troduces this lacking concept through a new package: the
Mapping package. It defines the link between the source
code and the UI from one side and the source code and the
data from the other side. The package introduces a new
KDM code model called MappingModel (c.f. Figure 6).
This model contains the existing mapping set representing
the data structures, the UI and the source code.

SMARTBRIDGE includes the mapping concept through
the abstract meta-class MappingElement. Thereby
two concrete meta-classes are defined to map the KDM
code package element with the KDM data package ele-
ment DataMapping and the KDM ui package element
UIMapping (Fig. 7).

Thanks to these three important features, i.e. navigabil-
ity, interfacing and mapping, SMARTBRIDGE fills the gap
between the KDM and the ASTM metamodels. This is es-
sential to reach a suitable level of abstraction which enables
a better understanding of the legacy source code, and hence
an easier modernization activity.

mapping
(SMARTBRIDGE)

+getMapsTo() : KDMEntity

MappingElementMappingModel

kdm
(KDM)

KDMModel

mappingElements

0..*

Figure 6. Mapping Model

mapping
(SMARTBRIDGE)

+getMapsTo() : KDMEntity

MappingElement

UIMapping

ui
(KDM)

AbstractUIElement

code
(KDM)

AbstractCodeElement

+mapsTo

from

Figure 7. Focus on UI Mapping

4. Working example

This section provides an illustration of SMARTBRIDGE
for the modernization of the COBOL legacy code. This il-
lustration especialy focuses on the benefits of interfacing
KDM and ASTM. For the sake of simplicity, the follow-
ing illustrations are based on the tiny COBOL code snippet
below:

MOVE "sample error" Error-Message
PERFORM FERROR

The modernization process is based on the three follow-
ing steps:

1. Text to Model transformation (aka. Injection)

2. Interfacing

3. Abstraction refining

4.1. Injection

The first step in the modernization process as discussed
in Section 2.3.2, is to obtain an abstract syntax tree con-
forming to the ASTM metamodel. This step is crucial in

6



extracting relevant information contained in the code. Thus
to build this ASTM model, a COBOL grammar must be
used to parsing the legacy source code. The result of this
parsing phase is then used to obtain the SASTM (Right part
on Fig. 8).

The obtained SASTM model contains specificities
closely related to the COBOL programming language like
MOVE, PERFORM, etc. In order to obtain more abstract ele-
ments, the transformation of this model into a GASTM one
is required (not showed here).

4.2. Interfacing

This second step aims at interfacing between ASTM and
KDM by using our SMARTBRIDGE metamodel in order to
progressively raise the abstraction level and also to itera-
tively enrich the target KDM model. This interfacing is il-
lustrated in Figure 8.

KDM ASTM

SMARTBRIDGE

Figure 8. Interfacing example

4.3. Abstraction refining

The third and last step of our modernization process aims
at reaching a first abstraction level and at enriching the ini-
tial model. In order to accomplish this step, a true source
code comprehension is necessary. In fact the MOVE in-
struction (see COBOL code sample) initializes the value
Error-Message. This field represents the parameter.
The KDM representation of the PERFORM statement is a
CallableUnit call with a parameter value of ’sample er-
ror’. Figure 9 shows the KDM representation obtained us-
ing SMARTBRIDGE.

5. Related Works

In this section, we study other works that address mod-
ernization issues through model-driven technologies. Log-
ically, we pay a special attention to those focusing on the
code level of legacy applications. In contrast with KDM-
compliant approaches, approaches relying on proprietary
metamodels, tailored for particular usages do exist.

KDM

SMARTBRIDGE

ASTM

Figure 9. Abstraction refining example

5.1. KDM-uncompliant

Reus et al. in [15] propose a MDA process for software
migration where they parse the text of the original system
and build a model of the abstract syntax tree. This model
is then transformed into an intermediate langage dubbed
GenericAST that can be translated into UML.

In [6], the authors summarize the use and impact of the
TGraph technology in Reverse Engineering. TGraphs [5]
are directed graphs whose vertices and edges are typed, at-
tributed, and ordered. In fact, representing source code as
a typed graph can be rephrased as representing code as a
model conforming to a metamodel. From this point of view,
metamodels used by parsers are designed from scratch.

Izquierdo and Molina developed the Gra2MoL approach
[3], where a model extraction process is considered as a
grammar-to-model transformation, so mappings between
grammar elements and metamodel elements are explicitly
specified. Beyond the technical aspects of the proposed
transformation language, one may notice that the target
metamodels are user-defined.

Fleurey et al. describe in [9] a model-driven migration
process in an industrial context. For that purpose, a tool
suite for model manipulation is used as a basis for automat-
ing the migration. The reverse engineering step moves from
a code model (output of the parsing) to a PIM, which is
implemented by model transformations from a legacy lan-
guage meta-model (e.g., COBOL) to a pivot metamodel.
The pivot metamodel is called ANT and contains packages
to represent data structures, actions, UIs and application
navigation.

5.2. KDM-compliant

In [14], Perez-Castillo et al. propose a technique that
recovers code-to-data links in legacy systems based on re-
lational databases and enable one to represent and man-
age these linkages throughout the entire reengineering pro-

7



cess. The proposal follows the ADM approach by lever-
aging KDM, especially the code package of the Program
Elements Layer where SQL sentences have been modeled
through a KDM extension. In this case, it is not an actual
metamodel, it is a profile one instead.

MoDisco (Model Discovery) [1] is the model ex-
traction framework part of the Eclipse GMT project
(www.eclipse.org/gmt). This framework is currently under
development and provides a model managing infrastructure
dedicated to the implementation of dedicated parsers (”dis-
coverers” in MoDisco terminology). A KDM-based meta-
model, a metamodel extension mechanism and a methodol-
ogy for designing such extensions are also planned.

6. Conclusion

ASTM and KDM complement each other in modeling
software systems’ syntax and semantics. In this article,
we propose to fill the gap between the two by introducing
SMARTBRIDGE in order to remain in the scope of ADM and
hence ensure the interoperability of the outputs of MDD re-
verse engineering activities.

Gluing ASTM and KDM aims at overcoming the main
flaw of a strict discretization of the modernization process,
thus enabling roundtrip engineering. It also balances out the
purely low-level representation of the legacy material sup-
ported by ASTM and the higher abstraction level supported
by KDM. Hence, SMARTBRIDGE has been implemented
within BLUAGE R© (www.bluage.com) and has been proven
to better represent code, while maintaining good architec-
tural representation; rather than using KDM and ASTM
separately. As such, we have demonstrated – in a tooling
purpose – that SMARTBRIDGE supplies a practical answer
to the traceability from end-to-end issue, along with knowl-
edge propagation at every step.

We are currently improving SMARTBRIDGE with addi-
tional features. Indeed, similarly to the glue ASTM-KDM,
we plan to fill the gap with further OMG ADM meta-
models like SPAP (Software Patterns Analysis Package),
SMM (Software Metrics Metamodel), etc. These new re-
lationships will make it possible to handle the different as-
pects of a legacy system as a cohesive whole.

Acknowledgements

This work has been funded by the European Commission
through the REMICS project (www.remics.eu), contract
number 257793, within the 7th Framework Programme.

References

[1] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. Modisco:
a generic and extensible framework for model driven reverse

engineering. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, ASE ’10,
pages 173–174, New York, NY, USA, 2010. ACM.

[2] E. J. Chikofsky and J. H. Cross II. Reverse engineering and
design recovery: A taxonomy. IEEE Softw., 7:13–17, Jan-
uary 1990.

[3] J. Cnovas Izquierdo and J. Molina. A domain specific
language for extracting models in software modernization.
In R. Paige, A. Hartman, and A. Rensink, editors, Model
Driven Architecture - Foundations and Applications, volume
5562 of Lecture Notes in Computer Science, pages 82–97.
Springer Berlin / Heidelberg, 2009.

[4] S. Ducasse and D. Pollet. Software architecture reconstruc-
tion: A process-oriented taxonomy. IEEE Trans. Softw.
Eng., 35:573–591, July 2009.

[5] J. Ebert and A. Franzke. A declarative approach to graph
based modeling. In Proceedings of the 20th International
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, WG ’94, pages 38–50, London, UK, 1995. Springer-
Verlag.

[6] J. Ebert, V. Riediger, and A. Winter. Graph technology in re-
verse engineering: The tgraph approach. In Workshop Soft-
ware Reengineering, pages 67–81, 2008.

[7] L. Favre. Model Driven Architecture for Reverse Engineer-
ing Technologies: Strategic Directions and System Evolu-
tion. Premier Reference Source. Igi Global, 2010.

[8] F.Barbier, G.Deltombe, O.Parisy, and K.Youbi. Model
driven reverse engineering: Increasing legacy technology in-
dependence. In The 4th India Software Engineering Confer-
ence, Thiruvanantpuram, India, February 2011. CSI ed.

[9] F. Fleurey, E. Breton, B. Baudry, A. Nicolas, and J.-M.
Jézéquel. Model-driven engineering for software migration
in a large industrial context. In MoDELS, pages 482–497,
2007.

[10] I. Kurtev, J. Bézivin, and M. Aksit. Technological spaces:
An initial appraisal. In CoopIS, DOA 2002 Federated Con-
ferences, Industrial track, 2002.

[11] A. S. F. B. Mohagheghi Parastoo, Berre Arne Jrgen and
G. Benguria. Reuse and migration of legacy systems to inter-
operable cloud services - the remics project. In Proceedings
of Mda4ServiceCloud’10 at the Sixth European Conference
on Modelling Foundations and Applications, ECMFA ’10,
June 2010.

[12] OMG). Knowledge discovery metamodel - version 1.3.
http://www.omg.org/spec/KDM/1.3, 2011.

[13] OMG. Syntax tree metamodel - version 1.0.
http://www.omg.org/spec/ASTM/1.0, 2011.

[14] R. Perez-Castillo, I. G.-R. de Guzman, O. Avila-Garcia, and
M. Piattini. On the use of adm to contextualize data on
legacy source code for software modernization. Reverse En-
gineering, Working Conference on, 0:128–132, 2009.

[15] T. Reus, H. Geers, and A. van Deursen. Harvesting software
systems for mda-based reengineering. In ECMDA-FA, pages
213–225, 2006.

[16] W. Ulrich. A status on omg architecture-driven moderniza-
tion task force. In Proceedings EDOC Workshop on Model-
Driven Evolution of Legacy Systems, Monterey, California,
USA, 2004. IEEE Computer Society.

8


