
Enforcing Green Code With Android Lint

Olivier Le Goaër

Computer Science Laboratory (LIUPPA)

University of Pau

Pau, France

olivier.legoaer@univ-pau.fr

Abstract—Nowadays, energy efficiency is recognized as a core

quality attribute of applications (apps) running on Android-

powered devices constrained by their battery. Indeed, energy

hogging apps are a liability to both the end-user and software

developer. Yet, there are very few tools available to help

developers increase the quality of their native code by ridding it of

energy-related bugs. Android Studio is the official IDE for millions

of developers worldwide and there's no better place to enforce

green coding rules in everyday projects. Indeed, Android Studio

provides a code scanning tool called Android lint that can be

extended with lacking green checks in order to foster the design of

more eco-responsible apps.

Keywords— green, Android, smells, lint, bugs, energy, battery

I. INTRODUCTION

Smartphones have become more and more popular since the
introduction of iPhone and Android-based devices, and battery
lifespan is unquestionably a hot concern. Most smartphones
offer the possibility to add new applications, through
distribution channels such as the Google Play for the Android
platform or App Store for the iOS platform. These applications
often take advantage of the sensors available, typically GPS and
Internet connectivity to develop context-aware applications,
accelerometer for motion tracking, Bluetooth for pairing with
third-party objects, etc. While the fleet of devices is becoming
increasingly mobile, many software developers have limited
experience with energy-constrained portable embedded systems
such as smartphones/tablets and wearables, which leads to
unnecessarily power-hungry applications that rely overly on the
operating system for power management. In addition, users
struggle to determine which applications are energy-efficient,
and typically users blame the operating system or hardware
platform instead of unfortunate and unintentional software
design decisions [1].

On the one hand, operating systems have responded by
offering an increasingly intelligent energy management. Starting
from Android 6.0, Android introduces two power-saving
features called Doze and App Standby. Since Android 9.0, it
introduces an AI feature called Adaptive Battery. Of course,
equivalent functionalities exist for iOS. On the other hand, poor

evaluations left on application stores by users [2] or sometimes
massive uninstallations push developers to assume their share of
responsibility for energy waste. The emergence of sustainability
and the reduction of energy consumption in the social, political
and technical agenda has accelerated this awareness in recent
years. The noble objective of Green Software is that the small
energy savings obtained at the scale of each device add up and
contribute to reducing the ecological footprint of mobile
software on a global scale. Thus, applications of all kinds and
sizes must be concerned about their energy efficiency, and not
merely world-class apps with their enormous base of users.

The Android platform is at the forefront of this ecological
challenge because it is the undisputed leader in market share
(about 85%), with 2 billion monthly active devices globally in
2017. Its Google Play application store has 2.6 million
applications available in 2018, with an estimated download
volume of 19 billion in 2017. Unfortunately, most developers
only have little to no knowledge about energy-efficiency:
common misconceptions are often made, and a general lack of
energy-aware tooling has to be deplored [3]. And still: older
applications would deserve to be reengineered to save energy,
while newly created apps should make sure they are energy-
friendly before being released in an ultra-competitive market.

Meanwhile, Android lint is a static code analysis tool
enabled by default in the official Android Studio IDE to ensure
the general quality of development project. It is thus the devoted
companion of almost all native code developers whose recent
study [4] showed that they have confidence in its inspection
report and that they even use it to learn new things and improve
themselves. From this point of view, a linter is much more
effective than any kind of guideline in disseminating best
practices to a large audience. For these reasons, this paper argues
that Android lint is the ideal vector by which green coding habits
can be gradually changed, through systematic hunting of
recurring energy inefficiency bugs. Such a tool will allow to
check if an application is green-by-design, far prior to its
deployment on real devices.

The structure of this paper is as follows: Section II describes
eleven green bugs that can be found in real-world development
projects with the Android SDK. Section III explains how the
bugs have been implemented as green checks with the Android
lint framework. Section IV explains how to use the prototype in
Android Studio before giving a brief feedback on this type of
tool in Section V. Related work is mentioned in Section VI
before concluding and providing perspectives in Section VII.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

ASEW '20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery. ACM ISBN 978-1-4503-8128-4/20/09…$15.00

https://doi.org/10.1145/3417113.3422188

II. ANDROID-SPECIFIC GREEN BUGS

A green bug (a.k.a energy bug [5]) is a defect in the native
code written by the Android developer that can potentially
shorten the battery life of a device while in use. It may be
negligence or error on her part. Anyway, a green bug is an
approximation of what will happen at the runtime exclusively on
the basis of design-time. Green bugs are thus sometimes referred
as bad smells or anti-patterns.

A. Green Bugs Overview

The list of the 11 green bugs considered in this paper is given
in Table 1. They are intended to represent realistic energy-
related problems that Android programmers may face.

TABLE I. ANDROID-SPECIFIC GREEN BUGS

Bug name Severity Artifact Supply

Everlasting Service ERROR Source code K

Dark UI WARNING
Manifest, Style,

Drawable
R

Battery-Efficient Location INFO
Source code,

Gradle
O

Sensor Leak ERROR Source code O

Sensor Coalesce WARNING Source code O

Bluetooth Low-Energy INFO Source code O

Internet In The Loop ERROR Source code R

Durable Wake Lock WARNING Source code K

Uncompressed Data

Transmission
WARNING Source code R

Rigid Alarm WARNING
Source code,

Gradle
K

Service at Boot-time WARNING
Source code,

Manifest
K

Discovering and evaluating green bugs tightly coupled to the
Android framework is cumbersome in practice. To achieve this,
it is possible to use the following suppliers:

 (O)fficial resources: some battery killers are explicitly
mentioned in the Android developer guide1 or are
sometimes found in the API reference documentation2,
nestled in docstrings at the class or method level.

 (K)nowledgable communities: skilled Android
developers report how they have dealt with excessive
battery depletion and how they have solved them,
whether in blog posts or on popular exchange platforms
such as StackOverflow or Google Groups.

 (R)esearch literature: studies regularly focus on very
specific aspects in order to identify hotspots, like
cryptography [6], advertising [7], logging [8], network
traffic [9], display [10], ML [11] etc.

In addition, the Android specificity means that bugs do not
only reside in the source code but can possibly affect every
artifacts that form an Android project, namely: manifest,
resources, source code (*.kt, *.java), bytecode, Gradle files,
ProGuard files, Property Files.

Finally, the different levels of severity of green bugs are as
follows: ERROR means a serious design problem. As it stands,
the application should not be deployed. WARNING points out
a potential problem that it would be more prudent to correct.
INFO draws the developer's attention to the existence of better
solutions elsewhere.

B. Green Bugs Details

In this section the technical description of each green bug is
given using straight references to elements of the Android
framework.

1) Everlasting Service: If someone calls

Context#startService() then the system will retrieve

the service (creating it and calling its onCreate() method if

needed) and then call its onStartCommand(Intent,

int, int) method with the arguments supplied by the client.

The service will at this point continue running until

Context#stopService() or Service#stopSelf()

is called. Failing to call any of these methods leads to a serious

energy leak.

2) Dark UI : Developers are allowed to apply native themes

for their app, or derive new ones from the latter. This decision

has a significant impact on energy consumption since

displaying dark colors is particularly beneficial for mobile

devices with (AM)OLED screens [12, 13]. Note that the recent

generalization of dark mode apps on various platforms clearly

goes in this direction. By default Android will set Holo to the

Dark theme (style Theme.Holo) and hence switching to the

light theme (style Theme.Holo.Light) within the manifest

should be avoided.

3) Battery-Efficient Location: Location awareness is one of

the most popular features used by apps. The fused location

provider is one of the location APIs in Google Play services

which combines signals from GPS, Wi-Fi, and cell networks,

as well as accelerometer, gyroscope, magnetometer and other

sensors. It is officially recommended to maximize battery life.

Thus, developer has to set up Google Play Service in her gradle

file and then to import from

com.google.android.gms.location instead of the

android.location package of the SDK.

4) Sensor Leak: Most Android-powered devices have built-

in sensors that measure motion, orientation, and various

environmental conditions. In addition to these are the image

sensor (a.k.a Camera) and the geopositioning sensor (a.k.a

GPS). The common point of all these sensors is that they are

expensive while in use. Their common bug is to let the sensor

unnecessarily process data when the app enters an idle state,

typically when paused or stopped. Consequently, calls must be

carefully pairwised:

SensorManager#registerListener()/unregist

erListener() for regular sensors,

Camera#open()/Camera#release() for the camera

and LocationManager#

requestLocationUpdates()/removeUpdates()

for the GPS.

1 https://developer.android.com/guide
2 https://developer.android.com/reference/

5) Sensor Coalesce: With

SensorManager#registerListener(SensorEven

tListener, Sensor, int) the events are delivered as

soon as possible. Instead, SensorManager#

registerListener (SensorEventListener,

Sensor, int, int maxReportLatencyUs) allows

events to stay temporarily in the hardware FIFO (queue) before

being delivered. The events can be stored in the hardware FIFO

up to maxReportLatencyUs microseconds. Once one of

the events in the FIFO needs to be reported, all of the events in

the FIFO are reported sequentially. Setting

maxReportLatencyUs to a positive value allows to reduce

the number of interrupts the AP (Application Processor)

receives, hence reducing power consumption, as the AP can

switch to a lower power state while the sensor is capturing the

data.

6) Bluetooth Low-Energy: In contrast to classic Bluetooth,

Bluetooth Low Energy (BLE) is designed to provide

significantly lower power consumption. Its purpose is to save

energy on both paired devices but very few developers are

aware of this alternative API. From the Android client side, it

means append android.bluetooth.le.* imports to

android.bluetooth.* imports in order to benefits from

low-energy features.

7) Internet In The Loop: Opening and closing internet

connection continuously is extremely battery-inefficient since

HTTP exchange is the most consuming operation of the

network [14]. This bug typically occurs when one obtain a new

HttpURLConnection by calling

URL#openConnection() within a loop control structure

(while, for, do-while, for-each). Also, this bad practice must be

early prevented because it is the root of another evil that

consists in polling data at regular intervals, instead of using

push notifications to save a lot of battery power [15].

8) Durable Wake Lock: A wake lock is a mechanism to

indicate that your application needs to have the device stay on.

The general principle is to obtain a wake lock, acquire it and

finally release it. Hence, the challenge here is to release the lock

as soon as possible to avoid running down the device's battery

excessively. Missing call to PowerManager#release() is

a built-in check of Android lint (Wakelock check) but that does

not prevent abuse of the lock over too long a period of time.

This can be avoided by a call to PowerManager#acquire

(long timeout) instead of

PowerManager#acquire(), because the lock will be

released for sure after the given timeout expires.

9) Uncompressed Data Transmission: In [15], Höpfner and

Bunse discussed that transmitting a file over a network

infrastructure without compressing it consumes more energy

than with compression. More precisely, energy efficiency is

improved in case the data is compressed at least by 10 %,

transmitted and decompressed at the other network node. From

the Android client side, it means making a post http request

using a GZIPOutputStream instead of the classical

OutputStream, along with the HttpURLConnection

object.

10) Rigid Alarm: Applications are strongly discouraged

from using exact alarms unnecessarily as they reduce the OS's

ability to minimize battery use (i.e. Doze Mode). For most apps

prior to API 19 (refer to the targetSdkVersion property

of build.gradle), setInexactRepeating() is

preferable over setRepeating(). When you use this

method, Android synchronizes multiple inexact repeating

alarms and fires them at the same time, thus reducing the battery

drain. Similarly, setExact() and

setExactAndAllowWhileIdle() can significantly

impact the power use of the device when idle, so they should be

used with care. High-frequency alarms are also bad for battery

life but this is already checked by Android lint (ShortAlarm

built-in check).

11) Service at Boot-time: Services are long-living

operations, as components of the apps. However, they can be

started in isolation each time the device is next started, without

the user's acknowledgement. This technique should be

discouraged because the accumulation of these silent services

results in excessive battery depletion that remains unexplained

from the end-user's point of view. In addition, end-users know

how to kill applications, but more rarely how to kill services.

Thus, any developer should avoid having a call to

Context#startService() from a broadcast receiver

component that has specified an intent-filter for the

BOOT_COMPLETED action in the manifest.

III. GREEN CHECKS IN ANDROID LINT

The Android lint tool is a static code analysis tool that checks
an Android project source files for potential bugs and
optimization improvements for correctness, security,
performance, usability, accessibility, and internationalization.
Lint comes with many built-in checks almost without any
consideration for energy savings. We describe how the
previously mentioned green bugs were implemented as custom
checks in a brand new category.

A. Lint Framework

Android lint was designed for a tight integration with
Android Studio (based on IntelliJ IDEA). There are around 350
Android lint checks, and an even larger number of IDE
inspections. Generally, lint tries to keep the checks mostly
Android specific. The old checks were written in Java while the
newer ones are now written in Kotlin.

Android Tools Lint API (com.android.tools.lint)
provides a set of Java classes that define the internals of Android
lint and its integration with the IDE. The general principle is to

define issues (Issue) and declare them in a register

(IssueRegistry). An Issue is described by a unique Id, a
brief description, an explanation, a priority (from 1 to 10), a
severity (among Ignore, Informational, Warning, Error, Fatal)
and the category to which it belongs. Then, detectors

(Detector) are responsible for detecting the occurrence of
these issues.

The interesting thing is that a complete Android project can
be scanned, covering different scopes. As a result, the following
specialized scanners are available:

 XmlScanner - XML files (visit with DOM)

 SourceCodeScanner - Java and Kotlin files (visit
with UAST)

 ClassScanner - .class files (bytecode, visit with
ASM)

 BinaryResourceScanner - binaries like images

 ResourceFolderScanner - Android /res folders

 GradleScanner - Gradle build scripts

 OtherFileScanner - Other files

Created by JetBrains, UAST (Universal Abstract Syntax
Tree) tries to "unify" Java/Kotlin syntax trees so that a check
written with UAST will often work for both languages
automatically. Please also note that UAST is just a wrapper
around PSI (Program Structure Interface), the underlying API of
IntelliJ IDEA.

B. Greenness Category

At first sight, energy saving is a special case of performance,
which is an existing category. In fact, the gain at the battery level
is just a side effect of performance, because the search for
reactivity/speed generally implies that fewer operations are
performed. Conversely, energy conservation considers the
preservation of battery level as the primary intention, even if it
means sacrificing other quality attributes if necessary (including
speed).

Fig. 1. Introducing a new “Greenness” category within Android lint.

The green checks should not blend with the other inspections
because it seems important to understand what's really energy-
related, and what's not. Consequently, we added a new category
Greenness in addition to the 6 built-in categories (Fig. 1). The
11 checks will be placed in this category, which will help to
better inform developers. Ideally, the two built-in checks
ShortAlarm and Wakelock mentioned in Section II.B should be
moved to this new category.

C. Detectors

Detectors are responsible for reporting problems by
scanning certain types of files (the scope). As there are 11 issues,

as many detectors have been created. However, a given detector
may report different messages to the developer. For example,
the Sensor Leak bug includes two separate messages
corresponding to the following distincts situations: (1) the calls

to SensorManager# registerListener () are
missing and/or (2) they are present but are not placed in the

onPause() or onStop() activity’s callbacks.

When scanning human-readable files, a detector is based on
visitor-style programming. For performance reasons, it is not
feasible to traverse the abstract syntax tree for each check (as a
reminder, there are hundreds of them). As a result, the Lint
framework requires to first declare which node types you are
interested in so that a single tree iteration takes place, and when
the right node type is encountered the detectors concerned are
called back throughout a specific handler.

D. Quick fixes

Fixes are a mechanism proposed by Android Tools Lint API
that allows the developer to apply a single-click modification of
her source code. An Android lint quick fix does not work at the
UAST level but as text replacement, so that it is necessarily
limited to trivial cases. Fixable green bugs are the following:

 Dark UI: in the AndroidManifest.xml, replace the value

of android:theme attribute.

 Battery-Efficient Location: add a dependency entry to

build.gradle for Google Play Service Location.

 Sensor Coalesce: replace the call to

registerListener() by its queued alternative. If
the argument is 0, switch to the default value 15000.

 Durable Wake Lock: replace the call to acquire() by
its timed alternative.

 Rigid Alarm: replace the call to setRepeating() by
its inexact alternative.

IV. TOOL WALK-THROUGH

The prototype developed to illustrate the ideas expounded in
this paper can be downloaded from the following site:

http://green.pauware.com/android-lint/greenchecks.jar

A. Installation

The file must be placed in the ~/.android/lint/
default directory, unless the environment variable

$ANDROID_LINT_JARS is set. Then Android Studio must be
restarded. If it fails, try Invalid Caches/Restart from the menu in
the IDE.

If you are not using Android Studio, lint can also be run from
the command-line and can even write its results in output files
(HTML and XML).

B. Inspection

Because some green bugs cannot be checked on-the-fly, the
preferred way is to manually run inspections (Analyze > Inspect
Code). The results are displayed in the Inspection Results
window in Android Studio (Fig. 2).

In the left pane tree view, view the inspection results by
expanding and selecting the novel greenness category. The right
pane displays the inspection report for the selected green bug
and provides the name and location of the issue. Where
applicable, the inspection report displays other information such
as a green bug synopsis to help you correct the problem, and
optionally a quick-fix at the top of the pane.

Fig. 2. Defect highlighting for the green bug Sensor Coalesce.

V. LESSONS LEARNED

The choice of the Android lint framework to address the
problem of green bugs is not without its pitfalls. Here are three
lessons learned from the design of the tool presented in this
paper.

A. A rather limited power of expression

In principle, some well-known battery optimizations such as
deferring and caching could be checked statically but they are
almost impossible to formalize in practice. Deferring consists in
postponing costly actions to a more appropriate time, typically
when the device is in charge. As easy as it is to detect that a code
chunk will be triggered by a “in charge” event broadcasted by
the system, the payload of the latter cannot be analyzed. As for
catching, its typical purpose is to cache downloaded data instead
of repeatedly waking up the radio to re-download the data.
Unfortunately, there is no easily detectable code pattern for this
situation because the data structure for caching is freely defined
by the programmer.

B. False positives and false negatives

It is important to avoid alerting the developer to bugs that are
not bugs, but more importantly, it must be avoided missing the
real bugs. In this respect, the writing of checks can quickly take
a defensive form because it is necessary to anticipate various
situations. False positives occur, for example, when you simply
visit a method call by name, without making sure that the call
concerns an instance of the correct Android API class. Indeed, it
could be just a user-defined method with the same name. False
negatives often occur because of indirection levels. For
example, it is easy to detect that a given statement is located

inside a given method, but it escapes the scrutiny of the detector
when it is encapsulated in an intermediate method call.

C. Undocumented and instable API

Writing custom lint checks is like wading in undocumented
waters: there is very little documentation about Android Tools
Lint API and it is often deprecated. Indeed, lint has an unstable
API so that developers ought to be prepared to adjust their code
for the next tools release. In addition, writing a check can
quickly become a headache. However, to avoid having to write
things the “hard way”, the framework provides helpers,
evaluators (Java, Constant, Type, Resource) and utils (LintUtils,
SdkUtils, UastLintUtils, XmlUtils). They allow for example:
method resolving, type inference, class inheritance test, string
distance, and so on.

VI. RELATED WORKS

Not surprisingly, the body of research on energy efficiency
for mobile applications is quite recent, and the Android OS
platform is over-represented. A lot of works require the
execution of apps, which implies dealing with major hindrances:
indeterministic runtime environment, automated yet realistic
tests, invasive code instrumentation, hardly comparable nature
of apps (e.g. Video Game vs. Social Network), etc. In contrast,
these pitfalls are avoided by solutions at design-time.
Nevertheless, the latter often suffer from the same flaw: they
focus on well-known poor object-oriented designs (Blob Class,
Feature Envy, Long Method...) and Java idioms (for loop instead
of for-each loop...) instead of focusing on the power-intensive,
high-level constructs of Android apps. Nevertheless, the most
related work on this paper is as follows:

The PAPRIKA toolkit [17] is used for detecting 7
antipatterns. From an APK file, the tool (based on SOOT)
produces a graph model stored in Neo4J database. Then, the
graph is queried with CYPHER for the detection phase.

In [18], Android source code is modeled as a directed graph
under the TGraphs representation format. The authors then use
GReQL to both detect and restructure 7 energy code smells.

In [19] the authors base their work on 5 built-in checks of
Android lint that they consider to be energy-related. Based on an
existing tool chain, their solution called Leafactor automatically
refactor Java source code and xml layouts into the Eclipse IDE.

With Enersave API [20], the authors circumvent the problem
by suggesting to developers to use a specific API instead of the
genuine Android API. This custom API is a wrapper that embeds
timeouts and other optimizations to ensure energy savings when
using the network, location, screen, maps and bluethooth.

In [21], the authors proposed a tool named Relda2 and
written in Python. It disassembles the APK file into Dalvik
bytecode and constructs a function call graph. Relda2 then
analyses the resource request call and release calls for resource
leak detection. Considered method calls are provided to the tool
by the developer.

In [22], a technique called SAAD (Static Application
Analysis Detector) focuses on resource leak and layout defect
issues. To address the first issue, they decompile APK file into
Dalvik bytecode and perform a components call relationship

analysis. To address the second issue, they analyze the reports
(xml output) of Android lint which comes with built-in checks
for layouts.

During his thesis work, Reimann [23] laid the foundations
for a catalogue of quality smells for Android, including energy
efficiency. The technical solution chosen to detect and refactor
them is based on model-driven engineering tooling.

VII. CONCLUSION

A linter is a tool that highlight suspicious code with the final
objective to improve the global quality. Since energy efficiency
became an important quality concern for application software
developers [24], it becomes urgent to augment linters with green
coding rules. To illustrate that, this paper focused on eleven
green bugs encountered in real-life Android developments, and
whose impact on energy consumption was assessed by various
sources. Then they have been implemented as custom checks
within the extensible Android lint framework for a seamless
integration with Android Studio, the official IDE for the
development of native apps.

The green software research field is still in its infancy, and
there are virtually no tools with a sufficient level of acceptability
and maturity for the mobile developer community. Leveraging
from the well-known Android lint, the proposed solution has the
great potential to be one of them. Of course, not all green bugs
can be statically checked, but this contributes to the green-by-
design principles.

The work in progress consists of expanding the catalog of
Android-specific energy-related bugs/smells and making them
publicly available (See [25]). Future work will consist of
discovering unexpected or undocumented smells through
learning techniques.

REFERENCES

[1] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. Morley Mao, Z. Wang, L
Yang, “Accurate Online Power Estimation And Automatic Battery
Behavior Based Power Model Generation for Smartphones”.
CODES+ISSS’10, October 24-29, Scottsdale, Arizona, USA, 2010.

[2] C. Wilke, S. Richly, S. Götz, C. Piechnick and U. Aßmann, “Energy
Consumption and Efficiency in Mobile Applications: A User Feedback
Study,” 2013 IEEE International Conference on Green Computing and
Communications and IEEE Internet of Things and IEEE Cyber, Physical
and Social Computing, Beijing, 2013, pp. 134-141.

[3] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E Hassan. “What
do programmers know about software energy consumption?”, IEEE
Software, 33(3):83–89, 2016.

[4] Sarra Habchi, Xavier Blanc, and Romain Rouvoy. 2018. “On adopting
linters to deal with performance concerns in Android apps.” In
Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE 2018). ACM, New York, NY,
USA, 6-16.

[5] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. 2011. “Bootstrapping
energy debugging on smartphones: a first look at energy bugs in mobile
devices”. In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks (HotNets-X). ACM, New York, NY, USA, Article 5, 6 pages.

[6] Jiehong Wu, I. Detchenkov and Yang Cao, “A study on the power
consumption of using cryptography algorithms in mobile devices”, 2016
7th IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, 2016, pp. 957-959.

[7] J. Gui, S. Mcilroy, M. Nagappan and W. G. J. Halfond, “Truth in
Advertising: The Hidden Cost of Mobile Ads for Software Developers”

2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, Florence, 2015, pp. 100-110.

[8] Shaiful Chowdhury, Silvia Di Nardo, Abram Hindle, and Zhen Ming
Jiang. 2018. “An exploratory study on assessing the energy impact of
logging on Android applications”. Empirical Softw. Engg. 23, 3 (June
2018), 1422-1456.

[9] Sanae Rosen, Ashkan Nikravesh, Yihua Guo, Z. Morley Mao, Feng Qian,
and Subhabrata Sen. “Revisiting Network Energy Efficiency of Mobile
Apps: Performance in the Wild”. In Proceedings of the 2015 Internet
Measurement Conference (IMC '15). ACM, New York, USA, 339-345.

[10] M. Wan, Y. Jin, D. Li and W. G. J. Halfond, “Detecting Display Energy
Hotspots in Android Apps”, 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), 2015, pp. 1-10.

[11] Andrea K. McIntosh, Safwat Hassan, Abram Hindle, “What can Android
mobile app developers do about the energy consumption of machine
learning?”, Empirical Software Engineering 24(2): 562-601 (2019).

[12] M. Linares-Vásquez, C. Bernal-Cárdenas, G. Bavota, R. Oliveto, M. Di
Penta and D. Poshyvanyk, “GEMMA: Multi-objective Optimization of
Energy Consumption of GUIs in Android Apps”, 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C),
Buenos Aires, 2017, pp. 11-14.

[13] T. Agolli, L. Pollock and J. Clause, “Investigating Decreasing Energy
Usage in Mobile Apps via Indistinguishable Color Changes”, 2017
IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), Buenos Aires, 2017, pp. 30-34.

[14] D. Li, S. Hao, J. Gui and W. G. J. Halfond, “An Empirical Study of the
Energy Consumption of Android Applications,” 2014 IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC, 2014,
pp. 121-130.

[15] D. Burgstahler, U. Lampe, N. Richerzhagen and R. Steinmetz, “Push vs.
Pull: An Energy Perspective (Short Paper),” 2013 IEEE 6th International
Conference on Service-Oriented Computing and Applications, Koloa, HI,
2013, pp. 190-193.

[16] H. Höpfner and C. Bunse, “Towards an Energy-Consumption Based
Complexity Classification for Resource Substitution Strategies”,
Proceedings of the 22nd Workshop "Grundlagen von Datenbanken 2010",
Bad Helmstedt, Germany, May 25-28, 2010.

[17] G. Hecht, O. Benomar, R. Rouvoy, N. Moha and L. Duchien, “Tracking
the Software Quality of Android Applications Along Their Evolution
(T),” 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), Lincoln, NE, 2015, pp. 236-247.

[18] M. Gottschalk, M. Josefiok, J. Jelschen and A. Winter, “Removing
Energy Code Smells with Reengineering Services”, in Informatik 2012,
pp. 441-455.

[19] L. Cruz, R. Abreu and J. Rouvignac, “Leafactor: Improving Energy
Efficiency of Android Apps via Automatic Refactoring,” 2017
IEEE/ACM 4th International Conference on Mobile Software
Engineering and Systems (MOBILESoft), 2017, pp. 205-206.

[20] A.M. Muharum, V.T. Joyejob, V. Hurbungs, Y. Beeharry, “Enersave
API: Android-based power-saving framework for mobile devices,”
Future Computing and Informatics Journal, Volume 2, Issue 1, 2017, pp
48-64.

[21] T. Wu, J. Liu, X. Deng, J. Yan and J. Zhang, “Relda2: An effective static
analysis tool for resource leak detection in Android apps,” 2016 31st
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Singapore, 2016, pp. 762-767.

[22] Jiang H., Yang H., Qin S., Su Z., Zhang J., Yan J. (2017) “Detecting
Energy Bugs in Android Apps Using Static Analysis”. In: Duan Z., Ong
L. (eds) Formal Methods and Software Engineering. ICFEM 2017.
Lecture Notes in Computer Science, vol 10610. Springer.

[23] Reimann, J., Brylski, M. & Aßmann, U. (2014). “A Tool-Supported
Quality Smell Catalogue For Android Developers,” Softwaretechnik-
Trends, 34.

[24] Pinto, Gustavo & Castor, Fernando. (2017). “Energy efficiency: A new
concern for application software developers”, Communications of the
ACM. 60, 68-75.

[25] Energy Smells For Android. (Online)

https://pauware.univ-pau.fr/green/android-energy-smells/

