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Abstract. One of the main goals of Model-Driven Engineering (MDE)
is the manipulation of models as software artifacts. Model execution is in
particular a means to substitute models for code. Precisely, if models of a
dedicated Domain-Specific Modeling Language (DSML) are interpreted
through an execution engine, then this DSML is called interpreted-DSML
(i-DSML for short). The possibility of extending i-DSML to adapt models
directly during their execution, allows the building of adaptable i-DSML.
In this article, we demonstrate that specializing adaptable i-DSML leads
to the potential definition of accurate adaptation policies. Domain-speci-
ficities are the key factors to identify adaptations that really make sense.
In effect, we introduce the concept of family as a mean to encapsulate
adaptation operations that are attached to a particular domain. Families
can be specialized with the special purpose of defining a hierarchy of
adaptation contexts.
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1 Introduction

The main goal of Model-Driven Engineering (MDE) is to cope with productive
models to build software. This can be commonly achieved by generating the
code of the software from the models. On another hand, it is also possible to
directly execute a model. In this case, the software system is an execution engine
implementing an execution semantics and interpreting a model. Such a model
is written in an interpreted Domain-Specific Modeling Language or i-DSML for
short [8]. With i-DSML, the ability to run a model prior to its implementation is
a time-saving and henceforth cost-saving approach for at least two reasons: (a) it
becomes possible to detect and fix problems in the early stages of the software
development cycle and (b) ultimately the implementation stage may be skipped.
One slogan associated to i-DSML could be “what you model is what you get”
(WYMIWYG).

Meanwhile, software adaptation and self-adaptive software [15] have gained
more and more interest. The runtime adaptation problem is commonly tackled as
a two-stage adaptation loop (analyze–modify). In the MDE field, one of the most
prominent way to implement this loop is models@run.time [2], where models are
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Fig. 1. Adaptation loops

embedded within the system during its execution and acting primarily as a
reasoning support (case (a) in Fig. 1). The model is representing the current
state of the system and the necessity of adaptation is checked through it. The
required adaptation actions are then processed on the system. For adapting
a model execution, these models@run.time principles can of course be applied
(case (b) in Fig. 1). One can notice that in this particular case, there are two
models at runtime. The first one is the executed model and the second one is
the model representing its state in an adaptation purpose. As the content of the
latter is based on the content of the former, this introduces a kind of redundancy
between the two models which are hence containing similar or derived elements.
In this case, why not directly integrating elements dedicated to the adaptation
in the executed model? Even if it leads to complexify the model, it avoids the
main disadvantage of models@run.time which is to maintain a consistent and
causal connection between the system and the model for the model being a valid
representation of the system at runtime. Now (case (c) in Fig. 1), the model is
directly self-interrogating for managing its own adaptation. Such adaptable and
executable models are written in an adaptable i-DSML [5,6].

In this paper, we focus on the direct adaptation of an executed model (case (c)
in Fig. 1) with the definition of adaptable i-DSML. To that extent, we propose an
example about a homemade process modeling language. Through this example,
we show that specializing the i-DSML leads to enabling automatic and relevant
adaptation policies. Indeed, with general-purpose models (and without strong
link to any particular business content), it is often difficult, even impossible, to
define automatic adaptation actions. Adding new elements on the metamodel
or restricting the space of possible models through additional constraints can
unlock this situation. The concept of adaptation family is proposed for man-
aging adaptable i-DSML specialization. A family is composed of a specialized
metamodel and associated adaptation policies. Families may inherit from each
other allowing the definition of hierarchies of families. Inheritance naturally of-
fers the reuse, factorization and specialization of adaptation policies as for code
in object-oriented programming.

The rest of this paper is organized as follows. The next section presents an
i-DSML defining timed processes and shows that, in case of delay in the process
execution, no adaptation action can be established. Sect. 3 defines the concept of



families for managing adaptation. Sect. 4 presents some families for the i-DSML
of timed processes and concrete adaptation policies. Finally, related work is
discussed before concluding.

2 i-DSML Adaptation: a Working Example

Let us consider the i-DSML named Process Description Language (PDL), that
is intended to model any kind of processes as an ordered list of activities. It is
freely inspired from standard process languages like SPEM [13] or BPMN [1],
which are typically coupled with workflow engines for their execution. Here, this
is a simple version that supports parallel activities and includes time concerns.
The metamodel and the execution semantics of such an i-DSML are described
prior to an illustration of the latter in action is provided. Then, questions about
its possible adaptations are raised.

2.1 Definition of the PDL metamodel
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Fig. 2. Definition of the PDL i-DSML

Model execution and i-DSML have been widely studied, for instance in [3,4,
6,8,9,12]. All these works establish a consensus on model execution. Accordingly,
in this section, the PDL i-DSML is described following the characterization of [6].
Fig. 2 defines its metamodel. A metamodel of an i-DSML first contains a static
part. This part is simply a metamodel commonly defined for design purposes.
Here, the goal of this static part is to define the elements which aim at forming
the structure of a process. These elements are manifold and abstracted through



the ProcessElement meta-element. The main concrete process element is a se-
quence containing a set of activities. Activities within a sequence are ordered as
each activity (except the last activity) has a next one. Each activity has an ex-
pected duration, which is the ideal time lapsing to complete the task. Sequence
of activities can be parallelized through gateways. A fork aims at making several
sequences parallel whereas a join is a synchronization point of several sequences.
Finally, each process contains two pseudo-activities defining the beginning and
the ending of the process.

Additionally, an i-DSML metamodel contains a dynamic part. Its goal is to
be able to specify the current state of the model during its execution. Here, the
dynamic part consists of two meta-associations in Fig. 2. The first one expresses
for a process which process elements are currently active. The second one refers,
for a sequence, to its current active activity, if any. The combination of the two
gives the global state of the model under execution which is modified after each
execution step.

The static and dynamic parts of the metamodel are augmented with OCL
invariants expressing the well-formedness rules, for instance, there is no cycle
between activities. Due to lack of place, they are not presented.

Finally, the metamodel of an i-DSML is associated with an execution seman-
tics. Its goal is to express how the elements of the model are evolving during
the execution. Concretely, the execution semantics only modifies the dynamic
elements of the model and is implemented through a set of execution operations
that can be attached to meta-elements. Here, the execution semantics is embed-
ded within the runProcess() operation of Process and the next() operation
of Sequence. For the sake of clarity, these special operations are prefixed by an
<<execution>> conceptual stereotype. The runProcess() operation launches
the process execution. Its first action consists in executing the start element
of the process. Then, after the end of its execution, it executes its successor
elements and so on, until reaching the last element of the process. Executing
a sequence consists in executing its next() operation. If the sequence is just
launched, it executes its first activity. Otherwise, it executes the next activity
of the current one. Once an activity is finished, the next() operation is recalled
and so on until reaching the end of the sequence. Executing a fork consists in
executing each of its successor sequences. Executing a join consists in waiting
for each of its predecessor sequences to be finished before executing its successor
one.

2.2 A Software Development Process Defined Using PDL

As a familiar example, we choose to model a typical software development process
(Fig. 3, top part). This process contains four sequences (represented as dashed
rectangles): specification (Specify), implementation (Implement), documenta-
tion (Document) and distribution of the software (Distribute). The specifica-
tion is the first task of the process whereas the distribution is the last one once
everything else is finished. Between the two, the implementation and the docu-
mentation are realized in parallel. This is achieved through the fork named FID
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Fig. 3. A model conforming to the PDL i-DSML and its execution

(Fork for Implement and Document) and the join JID (Join for Implement and
Document). The specification contains two activities (represented by ellipses):
analysis followed by design. The number beneath the activity name, here 150
for both, is the expected duration of the activity. The documentation contains
user documentation and developer documentation activities. The implementa-
tion is the longest sequence: it begins with the core implementation, that is
business logic and services implementation (CoreImpl) and its associated test
activity (CoreTest). Next, the user interface is implemented (UIImpl) and tested
(UITest). Finally, all implementations are integrated.

When the execution engine takes the model as input, the execution trace is
formed by a collection of snapshots that correspond to every state of the model
after an execution step. We start by the first activity of the first sequence (the
Analyze activity). Then we continue with the next activity of this sequence
(the Design activity). This situation is represented at the top of Fig. 3 where
the current activity is filled with the gray color. After this, we encounter the
fork, so, the first activity of each successor is activated (the CoreImpl and the
UserDoc activities). This situation corresponds to the bottom of Fig. 3. Once
each activity of these two sequences has been executed, we are able to cross the
join. The last activity executed is then Distribute.

2.3 Toward the Adaptation of a Process

Still following the characterization of [6], an i-DSML is extended following two
ways for becoming adaptable. First, the metamodel is extended with elements
dedicated to the adaptation and second, an adaptation semantics is associated
with the metamodel and implemented by the execution engine so that it is turned
into an adaptation engine. The adaptation semantics aims at acting on the model
for adapting it. This adaptation may have impacts on the whole model, including
the modification, creation or deletion of static, dynamic or adaptation elements.



Concretely, the adaptation semantics is implemented through two kinds of oper-
ations. The first kind is query operations returning a boolean and expressing if
an adaptation is required or not. They are called adaptation checks. The second
kind is adaptation actions that apply the adaptation on the model.

Concerning the PDL i-DSML, at first glance, a situation requiring adapta-
tion is when the process has been delayed. However, this necessitates to eval-
uating the laps between the expected duration and the real elapsed time. So,
an adaptation element has to be added on the metamodel: an elapsedTime at-
tribute in the Process meta-element. This basic extension of the metamodel is
intuitively evident since having an elapsed time is a logical complement of an ex-
pected duration for an effective process execution. It is now easier to implement
a check operation that determines if we are late during the process execution.
It concretely requires comparing the expected durations of all already finished
activities to the real elapsed time.

Now the question is: “If we are late, what must we do?”. The answer is:
“In the current definition of the i-DSML, we do not know!”. Indeed, there is no
obvious adaptation action that can be processed without additional information.
We may imagine removing unnecessary activities in the rest of the process.
Which ones? An arbitrary erasure is clearly not a good idea. In the example, the
documentation and testing activities may be bypassed. We know that because
we have business knowledge on, in general, what a software development process
really is. Documentation is never at the core production of the subject software
and testing, in the worst case, can possibly be skipped if really required. The
problem is that the execution engine has no business vision and then, has not
this business knowledge. The engine agnostically processes the adaptation for
any kind of model, being a software development process or a cooking recipe.
Another idea would be to parallelize some activities to reduce the time of the
process execution. Typically, from a business knowledge viewpoint, we know that
the development of the business part can be potentially done in parallel with
the user interface development. Again, the engine does not have this business
knowledge.

As a conclusion, with the basic definition of the i-DSML (including a small
and evident extension), it is not possible to know how to adapt a PDL model.
In other words, it is not possible to define an adaptation semantics. The model
is too general. However, we foresee that with additional information, adapta-
tion actions can be defined and make sense. The metamodel then needs to be
specialized to embed this additional information. More generally, the most spe-
cialized and constrained a metamodel is, the most automatic manipulation of
the model is possible. Besides, the most defining relevant adaptation semantics
is made possible. In the next section, we define the concept of family which is an
i-DSML specialization associated with a dedicated adaptation semantics. Then,
in Sect. 4, we define concrete adaptation families for the PDL i-DSML.



3 Family-based Framework for i-DSML Adaptation

Assuming the fact that from a minimal i-DSML one can create various exten-
sions, each providing a foundation for dedicated adaptations, it becomes highly
desirable to organize all these software pieces. That is why we propose in this
paper the adaptation families and the specialization relationship between them.

3.1 Definition of a Family

Each metamodel of an i-DSML, with the definition of its meta-elements, leads
to define a set of operations that make sense and are implementable based on
these meta-elements and their associated constraints. These operations are those
defining an execution or an adaptation semantics. Then, as these operations are
tied with a given metamodel, we propose to logically group them under the form
of a family. Here is the definition of a family:

Definition 1. A family brings together a metamodel and a set of associated
operations (execution operations, adaptation checks and adaptation actions). It
provides guidance to a software designer that can glue together operations avail-
able in this context.

Hence, a family is like a frame in which an engineer can dip into extant
elements of solutions with confidence. Afterwards, she/he is responsible for their
correct orchestration. A family is identified by an unique name referencing its
metamodel and contains three kinds of elements:

1. Execution operations: operations that control the execution flow of the model.
2. Adaptation checks: boolean operations expressing if the current model is

aligned with the execution environment or is respecting specific constraints.
If not, adaptation must be undertaken.

3. Adaptation actions: operations that modify the content of the model in an
adaptation purpose.

We call “attributes” all these elements within a family.

3.2 Family Specialization

The conclusion of the discussion of Sect. 2.3 was that specializing a metamodel
is relevant for defining adaptation: the PDL i-DSML has first been extended and
then, the discussion concluded on the necessity of extending it one step further
to have the ability to define concrete adaptation semantics. As a consequence, we
propose the specialization of families and thereby to build a hierarchy of families
for defining adaptation semantics.

Specializing a family is based on specializing metamodels. Model typing and
subtyping, that is specialization relationships between metamodels or metamodel
parts, have been defined in [11, 18, 19]. The metamodel specialization we use in
this paper is based on their definition. A metamodel defines a structure (a set



of associated meta-elements) and is augmented with a set of invariants, typ-
ically written in OCL, for specifying the well-formedness rules. Following the
UML profile spirit, a specialized metamodel strictly extends these two parts of
a metamodel:

Definition 2. A metamodel MM’ is a specialization of a metamodel MM if MM’
extends the structure and/or the invariants of MM. MM’ is built by adding to
MM, new meta-elements, new attributes in meta-elements, new operations in
meta-elements and/or new associations between meta-elements without remov-
ing any existing elements of MM. MM’ defines additional invariants without
removing the existing ones of MM.

The specialization of a family, that is the definition of a subfamily from a
superfamily, is simply made by first specializing its metamodel. As this special-
ization is a strict extension and does not remove anything, all statements that
are made about a superfamily also apply to all subfamilies. We lay down that
subfamilies “inherit” execution operations, adaptation checks and adaptation
actions from the superfamily. Anything that can be done (from an execution or
adaptation viewpoint) with a model of the superfamily can also be done with a
model of the subfamily.

Second, in addition to new elements (structural or invariants) in the meta-
model, new attributes can be defined for a subfamily, that is, new execution
operations, adaptation checks and adaptation actions. Concisely, a family spe-
cialization is defined as follows:

Definition 3. A family F’ is a specialization of a family F if the metamodel of
F’ is specializing the metamodel of F. F’ inherits from all the attributes (execu-
tion operations, adaptation checks and adaptation actions) of F and can define
additional ones.

Multiple inheritance between metamodels and families is allowed. However
conflicts are supposed to be avoided through a careful design.

As families can inherit from each other, it is then possible to define hierar-
chies of families. The root of a hierarchy is an i-DSML; dealing only with exe-
cutable models without any adaptation concern. The root i-DSML family can
be specialized to define either others i-DSML (without adaptation) or adaptable
i-DSML (including adaptation). The more a family is placed at the bottom of
the hierarchy, the more its metamodel is specialized and allows the definition
of specific adaptation policies. Reaching a certain level of specialization, some
adaptable i-DSML can even be based on specific business content as explained
in the following subsection.

3.3 Domain versus Business Level Adaptation Policies

Another notion emerges from the previous ideas although it can be tricky to
formalize it. Along with the generalization/specialization, a family may repre-
sent a set of business-neutral models or not. A business-neutral or domain-level



scope expresses that an adaptation policy can be applied on any model conform-
ing to the metamodel of the family, independently of its content (it is said to
be “domain” because it is based only on the constructs of the Domain-Specific
Modeling Language). Conversely, a business-level adaptation policy is based on
specific business elements contained in the model. Domain-level families are gen-
erally placed on top of the hierarchy while business-level ones are placed in the
bottom.

For example, constraining a process to have at least one fork is business-
neutral and then situated at the domain level. Indeed, any process may poten-
tially satisfy this fork constraint, regardless of its business content (a cooking
recipe, a software development method, etc.), so that the associated adaptations
can be reused across a large variety of models. Conversely, constraining a process
to have an activity named “beat eggs” breaks the neutrality in the sense that it
now presupposes that the process falls within the cooking domain. In that case,
the adaptation written for such a family can be very accurate, but far from being
reusable.

Technically speaking, the fringe between business-level and domain-level is
somewhat fuzzy. However, we can say that if an adaptation semantics, within an
adaptation check or an adaptation action, is based on literal values (such as the
string value “beat eggs”), then the adaptation will be considered as business-
level.

4 Putting PDL into the Framework

To give a better understanding of the ideas developed in the previous section, we
reconsider the illustration of the PDL i-DSML from a family-based framework
point of view. Fig. 4 defines a possible family hierarchy for our i-DSML. Each
family is graphically described by a box with four compartments. They contain,
from top to bottom: the name of the family that references the eponymous meta-
model, the execution operations, the adaptation checks and the adaptation ac-
tions associated with the family. The hierarchy defines six families: one dedicated
to execution only (PDL), one business-level family (ManagedSkipAdaptPDL) and
four domain-level families. In order to distinguish these three kinds of family, an
<<execution>>, <<business>> or <<domain>> conceptual stereotype has been
placed above each family name. In this paper, we show only the metamodel of
the family DependSkipAdaptPDL because, thanks to the inheritance, this meta-
model contains all the elements defined in its superfamilies. It can then be used
to describe the evolution of the metamodels along the hierarchy (excepting for
the business-level family). This metamodel is represented on Fig. 5.

All specializations for the PDL i-DSML presented in the rest of this section
are extending the structure of the metamodel. However, in many cases, restrict-
ing the possible models solely by addition of OCL invariants is sufficient to define
adaptation policies. As an example, in [6], we study the adaptation of basic UML
state machines in case of unexpected events. With a general state machine, no
adaptation decision can be taken. However, imposing that a transition associ-
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ated with each expected event is starting from each state of the state machine
leads to be able to determine if an event is expected or not (there exists or not
an associated transition). Moreover, imposing that a given event always targets
the same state leads to be able to automatically know how to add a state and
transitions associated with the unknown event. These two restrictions are only
defined through two OCL invariants without any modification of the metamodel,



while they have a huge impact on the adaptation policies. Here lies the power of
the concept of family.

4.1 Description of the PDL family

The root of the family is called PDL. It is the i-DSML presented in Sect. 2.1. As
this i-DSML is only dedicated to execution, no adaptation checks nor adaptation
actions are defined but only the execution operations (runProcess() of Process
and next() of Sequence).

4.2 Description of the AdaptPDL family

Following the discussion of Sect. 2.3, a first basic extension of the PDL meta-
model consists in adding an elapsedTime integer attribute to the Process meta-
element and indicating the real execution time of a process. This leads to define
the AdaptPDL family. Thanks to this attribute, it is now possible to determine
if the process execution is late by comparing the expected duration with the
real elapsed time since the beginning of the process. This checking is realized by
the cLate() operation added to the Process meta-element and prefixed by a
<<check>> conceptual stereotype as shown on Fig. 5. It also appears in the third
compartment of the AdaptPDL family box on Fig. 4. However, as explained in
the discussion of Sect. 2.3, there is no way to define adaptation actions with this
metamodel yet. This will be done with the subsequent specializations adding
new elements on the metamodel.

One may wonder why it is relevant to define a family for an adaptable i-DSML
that does not define any concrete adaptation actions. The reason is that the
attribute defined and the associated adaptation check, are shared by several
subfamilies. These elements are then directly inherited in all these subfamilies
without requiring to define them several times. Making an analogy with object-
oriented programming, the AdaptPDL family can be seen as an “abstract family”.
For this reason, this family name has been italicized in Fig. 4.

4.3 Description of the SkipAdaptPDL family

As proposed in Sect. 2.3, in case of delay, an adaptation action can be to re-
move unnecessary activities in the rest of the process. In order to be able to
catch up activities that can be removed, we need to mark them. So, we add a
skippable boolean attribute to the Activity meta-element. This leads to de-
fine the SkipAdaptPDL family. The designer has now to express which are the
skippable activities in its process definition.

Thanks to this attribute, in addition to know that we are late with the
cLate() adaptation check, it is now also possible to determine if a next activity
is skippable. This checking is thus twofold and is realized by the cLateAnd-

Skippable() adaptation check added to the Process meta-element as shown on
Fig. 5. Two adaptation actions have been defined. The first one removes skip-
pable activities (i.e., it modifies the static part of the i-DSML). This adaptation



action is drastic and maybe the designer would appreciate a softer solution.
Then, instead of statically removing skippable activities, we propose another
adaptation action that only skips them (i.e., it modifies the dynamic part of the
i-DSML, updating the current activity to the benefit of a next activity). These
adaptation actions are respectively realized by the aRemove() and aSkip() oper-
ations added to the Process meta-element. They are prefixed by an <<action>>

conceptual stereotype. As these operations are adaptation actions, they appear
in the fourth compartment of the SkipAdaptPDL family box on Fig. 4.

As an example, in the Fig. 3, bottom hand side, the current activity is Design.
If for the implementation sequence that follows this activity, the CoreTest and
UITest are marked as skippable, once the CoreImpl activity finished and if we
are late, the CoreTest activity will be skipped and the next executed activity
will be UIImpl.

4.4 Description of the DependAdaptPDL family

In Sect. 2.3, instead of removing unnecessary activities we suggest to parallelize
some activities in order to decrease the time of the process. Obviously, we can-
not select randomly activities that will be parallelized because an activity may
depend on another. Consequently, this adaptation could be achieved only if we
are aware of the dependencies between activities. In order to state these de-
pendencies, we add a dependencies reference to the Activity meta-element.
This leads to define the DependAdaptPDL family. From this reference, in ad-
dition to know that we are late with the cLate() adaptation check, it is now
also possible to determine if a following activity is movable (taking into account
its dependencies). This double checking is realized by the cLateAndMovable()

adaptation check added to the Process meta-element as shown on Fig. 5. The
corresponding adaptation action is to transform unique sequences into multiple
sequences in parallel. This adaptation action is realized by the aParallelize()

operation added to the Process meta-element as shown on Fig. 5.
Fig. 6 gives an example of this kind of adaptation. At the top, there is the

model before adaptation. The dashed arrows represent the dependencies between
activities. These dependencies have been defined by the designer. The number
written between the parentheses after the process name indicates the elapsed
time. We are currently late (350 instead of the expected 300) and some activities
are movable (taking into account their dependencies). The bottom of Fig. 6 shows
the corresponding model after adaptation. For example, for the implementation
sequence, as CoreTest depends on CoreImpl, they must be part of the same
sequence. This is the same for UITest and UIImpl. However, “Core” activities
and “UI” activities have no dependencies between each other. This is why two
subsequences have been created.

4.5 Description of the DependSkipAdaptPDL family

Another interesting adaptation could be to postpone an activity (i.e., to move an
activity toward the end of the process) in order to execute it only if we are not
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anymore late. It is acceptable to postpone an activity if it is skippable (because it
will possibly not be done) but it cannot be postponed later than an activity which
depends on it. Consequently, we need at the same time the notion of skippable
activity and the idea of dependencies between these activities. In order to have
these pieces of information at runtime, we build the DependSkipAdaptPDL family
that inherits from two superfamilies: SkipAdaptPDL and DependAdaptPDL. It
means that the elements available in the i-DSML are the ones corresponding to
the i-DSML of these two families. In this way, a complex checking can be realized
by combining the cLateAndSkippable() and cLateAndMovable() adaptation
checks. The corresponding adaptation action is to shift an activity as far as
possible toward the end of the process. This adaptation action is realized by the
aPostpone() operation added to the Process meta-element as shown on Fig. 5.
Thanks to multiple inheritance, we are able to write an adaptation rule that is
based on the merging of two families.

So far, all the previous families were exclusively at a domain level. As ex-
plained in Sect. 3.3, it means that for processing the adaptation, there is no need
to have information about what is representing the instance of the Process meta-
element in terms of business. It could be for example a software development
process or a cooking recipe, as well. To give a concrete example of business-level
adaptation, the next subsection presents a business-level family.



4.6 Description of the ManagedSkipAdaptPDL family

During the software development process, if we are really very late, a cause
might be the project manager who is not skilled enough. Being very late may
be defined by counting the skipped activities and specifying a maximum num-
ber of allowable skips. In this context, adaptation could be to fire the project
manager and to hire a new one. This leads to define the ManagedSkipAdapt-
PDL family that is extending the SkipAdaptPDL family. This family defines a
cTooManySkips() adaptation check that expresses if more than a given num-
ber (for instance three) of skips have already been done. The adaptation action
aChangeProjectManager() of this family consists in creating a particular ac-
tivity in the process: a Change Project Manager activity (this activity can be
added in parallel of the existing activities of the process) which is immediately
activated.

This family is at the business-level because we are aware that the instance of
the Process meta-element will represent a project development with a manager.
Such an activity will not make sense for all the processes defined with PDL
i-DSML, such as a cooking recipe for example.

5 Related Work

In this article we highlighted some ideas coming from both the software architec-
ture field and the MDE community in order to apply them to the recent concept
of i-DSML.

Indeed, our inspiration is rooted in the works on architectural styles, a sem-
inal research theme during the late 90s [10, 16, 17]. An architectural style de-
fines a family of similar software architectures (e.g., client/server, pipe&filter,
blackboard, etc.) and basically provides specific elements of design and rules to
govern their arrangement. In [10] David Garlan highlighted a specialization rela-
tionship that may hold between styles (e.g., pipeline is a substyle of pipe&filter)
so that some Architecture Description Languages (ADL) have supported this
experimental feature, like ACME or ArchWare. Meanwhile, some authors have
investigated how the concept of style could ease (self)-reconfiguration of systems
at runtime [7, 14], based upon adaptation rules defined at the architecture-level
and an adaptation loop very close to case (a) in Fig. 1, retrospectively speaking.

Likewise, Jim Steel et al. [18] proposed the model typing where, while con-
forming to a metamodel of course, a model may adhere to one or more types
in the same way that an architecture described with an ADL may in addition
satisfy to one or more styles. Logically, Clement Guy et al. [11] continued the
works through the study of the subtyping relationship and more generally the
influence of such a type-system at the model-level [19], but regardless to the
adaptation issue.



6 Conclusion and Perspectives

In this paper, we have proposed a framework that enables the implementation of
the direct adaptation of an executed model conforming to an adaptable i-DSML.
An adaptable i-DSML defines models that are directly executable and adaptable.
The framework relies on the concept of family and aims at properly arranging a
number of elements of several natures that all serve the definition of adaptable
i-DSML. A family gathers a given metamodel of an i-DSML with operations
dedicated to its execution and adaptation. We have showed, through an example,
that specializing a metamodel of an i-DSML enables to define more relevant
and accurate adaptation policies. For this reason, families can inherit from each
other allowing us to defining hierarchies of families, from the most general to
the most specific. The inheritance offers conceptually the same advantages as in
object-oriented programming such as the reuse of existing adaptation policies,
the factorization of the same policies through a common superfamily or the
specialization of existing adaptation policies. A family can be defined at a domain
or business level depending on the fact that they are based on a particular
business content or not. We applied this approach on a concrete example of
a process model where several families have been built thanks to the family
specialization.

The engine executing and adapting a model must currently contain hard-
coded adaptation rules. Indeed, the execution operations, adaptation checks
and adaptation actions are orchestrated and weaved through the code of the
developer within the execution engine. However, it can be useful to modify this
orchestration during the execution of the model. If a family offers several adap-
tation actions, one can be more suitable than another, according to the current
context. To achieve this in a suitable way, as a short-term perspective of this
work, we plan to define an i-DSML dedicated to the orchestration of the avail-
able operations for a family. An orchestration model will be interpreted by the
execution engine in addition to the executed model. Concretely, this model will
define an adaptation semantics (combinations of adaptation checks and adapta-
tion actions) and its weaving with the execution operations. In addition, we can
reach meta-circularity if we turn the orchestration i-DSML into an adaptable
i-DSML as explained in this article. This unified approach can succeed because
this orchestration model ought to be modified during the execution. In other
words, as raised in [6], the adaptation semantics can be adapted at runtime and
thus leading to a true meta-adaptation.
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editors, ECMFA, volume 7349 of LNCS, pages 400–415. Springer, 2012.

12. G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak. Meta-Modeling
Runtime Models. In Models@run.time Workshop at MoDELS 2010, volume 6627
of LNCS. Springer, 2010.

13. OMG. Software Process Engineering Metamodell SPEM 2.0 OMG Draft Adopted
Specification. Technical report, OMG, 2006.

14. P. Oreizy, N. Medvidovic, and R. N. Taylor. Runtime Software Adaptation: Frame-
work, Approaches, and Styles. In Companion of the 30th International Conference
on Software Engineering (ICSE Companion ’08), pages 899–910. ACM, 2008.

15. M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst., 4:14:1–14:42, 2009.

16. M. Shaw. Comparing architectural design styles. Software, IEEE, 12(6):27–41,
1995.

17. M. Shaw and P. Clements. A Field Guide to Boxology: Preliminary Classification
of Architectural Styles for Software Systems. In The Twenty-First Annual Inter-
national Computer Software and Applications Conference (COMPSAC ’97), pages
6–13. IEEE Computer Society, 1997.
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