eeeeeeeeeeeeeeeeeeeeeeee
et du logiciel

| I |
eeeeeeeeee L] .
@ CORIGEN l_-l r‘IVERSITE
2 . DE PAU ET DES
o .::I PAYS DE ’ADOUR

Green Software

TACTICS, PATTERNS & SMELLS

Dr. Olivier Le Goaér, LIUPPA © 2024

An “old" st
n O S O rY° °e GREENSOFT Model
Green and Sustainable Software Model

4 3\

€ A holistic approach to green software o— LifsiCycieict Softiarv Frodicss

>Development>> Usage » End of Life

First-order Effects)
) Y,

{
(Second-order Effects
L

Third-order Effects

4 =)

Sustainability Criteria and Metrics

Sustainability as a quality attribute of O— (Gammon Y Drecty Refaed Y ndrecty Reeted)
software (i.e. non-functional property) [[Zerermm || ‘cnpomn || ‘cpsman:

7

Procedure Models

Develop
Administrate Use
Purchase

Recommendations and Tools

For For
Administrators Users

Stefan Naumann et al., “The GREENSOFT Model: A reference model for green
and sustainable software and its engineering”, Sustainable Computing:
Informatics and Systems, Volume 1, Issue 4, 2011, pages 294-304

X An increasing demand for tooling from O—
software practitioners (mainly devs)

For Developers

For Purchasers

.more acute than ever

Green Coding ic the act of designing, developing,
mainfaining, and (re-)ucing coftware eystems in
a way that requires ac little enerqy and natural
resovrces ac poscible. Green Coding methods or

practices thus mean any action or vse of

technology intended and cuitable to further this.”

Dennis Junger et al., Potentials of Green Coding, INFORMATIK 2023 - Designing Futures: Zukiinfte gestalten,
pp. 1289-1299

Il Green " software [} Engineering

Unlve;5|t|es teaching

Green Software Engineefing:
or Greer Coding 2R :
courses around the m;gi‘ld /f ‘/”" © 3 SFINLAND

& L

*_Mélardalen University ¥
ot Univéysity of Gothenburg &
95 Royallinstifute of Technology (KTH) '

ENGLAND =g . [/) ; ek iy
University of Bristol— /vean o1 '—m ;“J 5 GERMANY';—“ 8! (?4 7 Wiy ¥
5 ? ok HTW Berlin § : N
NETHERLANDS \{ ‘E‘ Hassd:plattrier-lristitut ; Ukrame

DELFT Umﬁrslty of Technology JMy’Wu”riburg Faotg Kharkiy- Awaan Institute

L

Retardan thool of Data Sclen}cﬁ,ﬁ % Hwelt. -Camplis| Bipkenfeld _ (curren@s&itus Uhknown)
¥ \ o Fa

Carnegie Mellon University
University of California Berkeley

B Texas State University
*—
USA

3
_— 1=rance / - N /
R = Umvgrsite de Pau et des Pays d&TAdour (UPPA) 5 ‘ N\ [=T=]

e C _

Dennis Junger et al., Potentials of Green Coding, Intermediate Report of the Project "Potentials of Green Coding*
for the ISOC Foundation, 2024

Topics ot GREENS'25 (co-located ICSE)

9th International Workshop on Green and Sustainable Software (GREENS'25)
Official website of the International Workshop on Green and Sustainable Software (GREENS)

R L

Co-Located with: Date: Location: Submission:
ICSE25 April 27-May 32025 Ottawa (Canada) November 11, 2024

Theme & Goals

Engineering green software-intensive systems is critical in our drive towards a sustainable, smarter planet. The goal of green software engineering is to apply green principles to the design and operation of
software-intensive systems. Green and self-greening software systems have tremendous potential to decrease energy consumption. Moreover, software can and should be rethought to address
sustainability issues, for instance, innovative business models, new processes, and incentives. Monitoring and measuring the greenness of software is critical to the notion of sustainable software
Demonstrating improvement is paramount for users to achieve and effect change. Analysis of the sustainability of a specific software system requires software that aids developers in weighing the four

of — economic, social, and technical — with their attendant trade-offs. The software engineering community must assume leadership in this important challenge. In this.
workshop, we explore the theme of “green software engineering for software sustainability” with the goal of creating actionable outcomes that will affect how software engineering is practiced and taught in the
future to help organizations prioritize their sustainability objectives.

Topics of Interest

GREENS 2025 seeks contributions addressing, but not limited to, the following topics related to sustainable software systems and green software engineering:

Practices for sustainability-aware software engineering
Metrics and measures for sustainability-aware software engineering

Teaching and training of skills and in software

Sustainable computing from a software and softy e system

« Applied, or experimented with, sustainability-aware software engineering methodologies at all levels (from requirements engineering and architecture design to coding, testing, and maintenance)
Bl nergy-effiicient choices for architecture, including design pattems, algorithms, data struciures, programming languages, language runtime, and infrastructure

Rl Architectural implications (architectural tactics, architectural styles, design patterns and anti-patterns) for green and sustainable software

Sustainability-aware in context (e.g., cloud-ed

Meta-analyses and syntheses of studies to build theories on green and sustainable software

Conceptual reflections related to software sustainability

Progress on the various dimensions of software sustainability and their interplay

Software adaptation and evolution for sustainability

Tools to support sustainability-aware decision-making

« Sustainability of emerging computing (Al and tive Al, cloud-fog-edge, quantum computing)

Green Al, lighter, less data-inte and less Al models and

Sustainable Large Language Models (LLMs)

Reduction of software organizations' compute-heavy workloads

Cloud and energy efficiency

Standards on the environmental sustainability of software and Al software

https://greensworkshop.github.io/

https://greensworkshop.github.io/

Burn your idols

Green language is no silver bullet

. " . Encrgy (3)
Mobile end users are very sensitive to battery life, @o 100
] . . !) C .
and the world's leading platforms are spending & to © Adx Lo
improve the energy efficiency of their ecosystems. (&) Chapel 218
2 oem a0
(¢) Fortran 2.52
(¢) Swift 2.79
(c) Haskell 3.10
(v) C# 3.14
. . . <) Go 3.23
Yet they are pushing Kotlin (formerly Java) and Swift) Dart 5.8
@D (?J) Fa‘j/&a cri e
(formerly Objective-C) to write software at large &) o) Racket | 7o1
e tomll I
(i) PHP 29.30
(v) Erlang 42.23
(i) Lua 45.98
(i) Jruby 46.54
. . . . i) Rub 69.91
=The answer rather lies in your design choices ® Python ro.s8

Rui Pereira et al. “Ranking Programming Languages by
Energy Efficiency”. Science of Computer Programming,
volume 205. Elsevier, 2021.

OOP Design patterns

Mean Values with Standard Deviation for Each Pattern
0.06

0.04
0.02

” l*?‘* %+Ii+ arilins,

-0.02

=Variations below 5% = negligible

Investigating the Impact of Software Design
Patterns on Energy Consumption

GoF's deslgn; peteras are, popelar atracires de-
sgned for froce~ighery ol abect-oniented seltware. H
rstood, wi

languages and compilers. We found, with a high confidence
level, that none of the Gol”s design patterns has a significant
‘Therefore, they can

them. We argue that software energy efficiency should rather
be considered within the business logic embedded by a design
pattern, and ultimately raised o a higher perspective of software
development.
Inder Terms—Enermy, Power, eign Pa l‘zmrm. Empirical
Studyy Replication Study, Software Engi
1. INTRODUCTION AND MOTIVATION

The Gang of Four (GoF) design patterns arc well-known
best practices for the design of object-oricnted \y«le\ GoF
design pattems is the collection of 23 design pattems, cd
int categories: creational, structural and hehaviora 1]
They were proposed in 1995, and are still relevant today in
‘moderm software engincering. Many development frameworks
rely heavily on them, and rescarchers are still exploring the
impacts of these patters. Adopting these patterns has signif-
icantly improved the quality of large-scale software projeets
with a particular focus on maintainability, an important non-
functional requirement

In parallcl, the growth of large software projects came
at an increased requirement for hardware, and an overall
increase in financial costs and cnergy consumption. For the
latter, rescarchers estimate that information and communi
tion tochnelogies (ICT) consumes today around 7% of globel
clectricity, and is expected to continue rising [2]. Software
practitioners consider writing green software a major con-
cem [3], but they lack in knowledge and lools 1o understand
the encrgy impacts of their code and how to make it more
energy-cflicient [4]. This makes cnergy efficiency another
important non-functional requircment

Today, crafting and building cncrgy-cfficient software is

d with many challenges: from current and upcoming
regulations and norms. 2 energy costs on servers
hosting software services, (0 the rising awareness of users an
businesses on the need for IT and software 10 be greener, and
1 the lack of training, knowledge, and tools 1o build grecn
software.

Gol'design patterns take full advantage of object-
orientation mechanisms, notably object instantiation, encap-

sulation, method overriding and late binding thercof (aka run-
time polymorphism, where 19 out of the 23 GoF: pattems
Therefore, exis ing. studics often consider that the
mpu.m of design pattems comes at an additional cnergy
conL. Howeves, it 1 diffical 1 esimate the mpact of design
patterns on energy consumption, as the literature is divergent
and contradictory. Beyond paterns, existing studies on the
overhead of object-oriented programming style 15] o for
embedded systems 6], have shown that there is an increase
in cnergy consumption. As the vast majority of developers
itioners have adopled object-oricnted programming
n patiens, we aim (o analyze the cnergy impact of
design patern:
Existing studies are cither partial (not all patterns \n..nuu,
outdated and out of sync with modem software stach
energy measurement approaches, or use a limited t,xpt.nmu!lal
and measurement protocol that do ot allow for clear and gen-
cralized conclusions. Therefore, we arguc thal it is necessary
today 10 conduct a solid empirical study. including replicating

software stack?

We aim 1o conduct & multi-platform study, cxploring the
cnergy impact of patiems on x86 computers along w.m
ARM-based systems (such as macOS or smartph
the latter, we decided o exclude it from our study i

xisting cnergy estimation approachcs |71, 18] are not reliable

in measuring » software code. Also, a design patiern
code cannot be run in isolation as it requires being part of
a larger component-based reactive system that might. skew
energy measurements.

In this paper, we aim (o answer this rescarch question:

Do design patterns impact software energy consump-

o answer our research question, we propose a multi-
platform and muli-software stack empirical replication study
crefo design patierns arc studied, with implemen-
tation variants writien in different languages and exceuted on
different platforms, CPU architcctures, operating systems and
compiled with different compiler versio
“The remainder of this paper is organized as follows: Sec-
tion 11 explore existing studies and thei ighlight-
ing the need for a multi-platform empirical replication study.
B S 1L o i ol g ol describing
the fiware stacks, the replication
along with the .xlnlllwlul experiments we conducted. The

A. Noureddine & O. Le Goaer, “Investigating the Impact of Software Design

Patterns on Energy Consumption”. - under submission -, 2024

OOP Refactorings

Tales from the Code #1: The
Effective Impact of Code Refactorings on Software Energy Consumption

Zakaria OURNANI'Z, Romain ROUVOY?, Pierre RUST!, Joel PENHOAT!
' Orange Labs, Rennes, France
3INRIA Lille Nord- Europe, Lille, France

’Ummm of Lille,

. France

Jr. {pierre.rusi joel,

Keywords: Code refactoring, empirical software engincering, software energy consump-
tion.
Abstract: Software maintenance and evolution enclose a broad set of actions that aim to improve both functional and
on-funciona conces o softar: ystem. Ao the onunctonalcocems,eergy consumpons eling
e traction in the the software is mobil yed in the cl
the though. In particular, while the state of the
5 A o
those appl software. th
7 open-s than S years. Then, by focusing on the
changes de n[:lclonngs we intend to assess the effects mduud
by ings i ice. For all these: studied,
ption. Interestingly, these resul
that i) brit . and ii) maj
1 ‘TRODUCTION efficiency in a more or less automated way (Gottschalk

has gained a substantial
significance in the last decade, both for research and

etal, 2013; Anwar et al., 2019; Cruz et al., 2017;
Morales et al., 2018; Cruz and Abreu, 2017; Bree and
Cinnéide, 2020). The large majority of the literature that
s een publshed i domai—especiallyformobile

industrial contexts (Veldecchue(a] 2017; Pintoet al.
e %

2016; Rodriguez, 20
etal. 2019). Hence, m:nyresearcl’nrszm:l plachuonels

started caring about the energy efficiency of software,

beyond performance and hardware concerns (Cruz
etal., 2017; Pinto et al., 2014; Manotas et al., 2016;
Manotas et al., 2013). Being integrated into mobile
or cloud environments, software systems are trying to
minimize their resource consumption to reduce battery
consumption o operational cost.
In this context, the impact of software development
i b dby

the state of the an—including code compilation, static
code analysis, code refactorings—which is the focus
of this paper. Source code refactorings can be described
as the application of acknowledged rules to improve
one or many aspects of a software system, such as its
clarity, maintenance, code smells, without impacting its
functional behavior (Kerievsky, 2004; Abid etal., 2020).

Yet, code refactorings have also been considered

Anwaretal, 2019; Linares- stqlxzcl AL 2010 based
their study ona predefined set of refactoring rules, design
pattems, or code smells. In most of these studies, the
authors measure and analyze the effect of atomic code
changes on the total energy efficiency of the software
under study, before concluding on theireffect. While this
interesting insight of
specific code refactrings on the energy consumption of a
code snippet, there i still no guarantee that the identified
code refactorings are frequently applied during the
lifespan of a software system. Some refactorings could
be very advantageous but are rarely applied which limits
their impact on the energy efficiency of the software.

Inthis paper, we thus consider an alternative approach
to study the impact of code refactorings on the energy
efficiency of legacy software systems. We focus on
acknowledged refactoring rules mostly issued from
Martin Fowler's book (Fowler, 1999), which are mostly

as a mean to improve the and/or energy

Table 2: The observed impact of mined refactoring rules

Refactoring Count CountxCommits ic WIC 8%() §%|() RI
add method annotation 10120 80960 30.77% 4341% 113% 214% 7.34
change variable type 101 606 1667% 1495% 024% 132% L17
rename parameter 4s 180 3333% 7169% -007% 182% 512
change parameter type 42 168 1176% 17.07% 0.03% 120% 081
change attribute type 26 130 1667% 939% 0.12% 135% 063
add class annotation 63 216 3333% 6353% 130% 220% 277
move class 40 120 30.00% 5428% 077% 221% 355
change return type 28 2 1481% 1993% 0.14% 111% 088
move method 33 9 2143% 19.10% 0.59% 176% 1.00
rename variable 21 84 2500% 1824% 046% 144% 104
move attribute 18 54 2500% 1881% 007% 192% 106
extract method 37 37 2000% 7187% 008% 124% 088
pullup method 32 32 3333% 3890% 0.03% 197% 075
rename class 6 24 2500% 1371% 114% 151% 082
add atribute annotation 8 16 2000% 15.12% 064% 114% 034
rename atiribute s 15 3000% 877% 055% 1.62% 042
add parameter 6 2 1667% 655% 082% 147% 0.19
merge parameter 6 6 100.00% 100.00% 6.00% 6.00% 6.0
extract class 2 4 3333% 1L14% 072% 2.62% 057
extract variable 3 3 1L11% 1052% 049% 091% 0.10
remove method annotation 1 1 11.11% 0.77% 0.71% 1.40% 0.01
rename method 1 1 IL1% 220% 032% 110% 002
modify method annotation 1 1 3333% 199% 250% 2.50% 020
move & rename method 1 1 20.00% 13.17% -0.32% 2.32% 0.30
merge atiribute 1 1 100.00% 100.00% 6.00% 600% 6.0

Zakaria Ournani, Romain Rouvoy, Pierre Rust, Joel Penhoat. Tales from the Code #1: The Effective Impact
of Code Refactorings on Software Energy Consumption. ICSOFT 2021 - 16th International Conference on
Software Technologies, Jul 2021, Virtual, France.

= fairly neutral

OOP Code smells

V. Wohlgemuth, D. Kranzlmiiller, M. Hob (Editors): EnviroInfo 2023,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2023 111

Influence of Static Code Analysis on Energy Consumption of
Software

Christoph Brosch!

Abstract: In recent years the rise of mobile devmes, such as smartphones, smartwatches, or tablets,
has led to an d demand for flicient software. In order to achieve this, developers
can use static code analysis tools, such as Pylint, to detect potential issues in their code. This paper

investigates how the usage of static code analysis infl the energy ption of software.
More ifically, we used the ing 1 Python and the general- purpose static code
analysis tool Pylint [Py22]. For this purpose, we d the energy for algorithms

implemented in the Benchmarks Game [Go22] before and after implementing the annotations and
compared the results. Our findings suggest that resolving the annotations can have a negative impact
on energy consumption. This was the case in 3 out of 8 algorithms. The remaining cases showed no
significant d\fference ‘We assume that the increased energy consumption is due to the multitude of
possibilities to impl i leading to a ibility for worsening performance. Further
research and experimentation are needed to objectively evaluate the impact of Pylint and static code
analysis by extension, on energy consumption.

Keywords: Static code analysis; Linter; P Energy ion; Efficiency; Python

Brosch, Christoph (2023): Influence of Static Code Analysis on Energy Consumption
of Software. Envirolnfo 2023.

Built-in
code
smells of
PyLint

= Effective or counter-productive?
Who's right?

Empirical Evaluation of the Energy Impact of
Refactoring Code Smells

Roberto Verdecchia'*, René Aparicio Saez*,

Giuseppe Procaccianti, Patricia Lago*

1Gran Sasso Science Institute, L' Aquila, Italy
“Vrije Universiteit Amsterdam, The Netherlands
roberto.verdecchia@gssi.it, [g.procaccianti, plago] @vu.nl

Abstract—Software energy efficiency has gained the increasing
attention of the research community. How to improve it, however,
still lacks evidence. Specifically, the impact of code smell refac-
toring on energy efficiency has been scarcely investigated. In the
exploratory study here reported, we investigate the impact on

performance and energy consumption of refactoring well-known
o sl o v st wasc apphcatin. I ot 15 idcestau
if software metrics can be used as indicators of the energy
impact af refactorng, we also mensured the variation cansed
by refactoring on a set of well-established software metrics. We
conducted a controlled experiment using state-of-the-art power
measurement equipment. Statistical hypothesis testing and effect
size estimation were performed on the experimental results,
which show that in one out of three applications, refactoring each
smell significantly impacted power- and ene

of software usage [6]. Therefore, the next step in finding
significant energy efficient improvements in ICT will most
likely be software related.

There are a number of empirical studies showing how
software engineering best practices can improve energy effi-
ciency [7], [8]. Code refactoring is probably the most common
approach to re-engineer software applications in order to
improve non-functional attributes. Refactoring activities are
typically aimed at removing code smells [9], that can be
defined as “certain structures in the code that indicate violation
of fundamental design principles and negatively impact design
ualit” [10l. Detection and refctoring of some code smels

rgy
E.g, refactoring Feature Envy and Long Method smells led
to a 49% energy efficiency improvement. No software metric,
however, significantly correlated with exceution time, power
or energy consumption. In conclusion,

resulted to be a viable process to significantly improve software
energy efficiency, The magnitude of the impact may depend on
‘application properties, c.g. size or age. Further research is needed
o undertan the relationship between software. meties and
energy efficiency.

Keywords-energy efficiency; code smells; refactoring; empirical
experiment.

L. INTRODUCTION

Computing devices have become a major part of our every-
day life. The number of these devices is predicted to globally
increase in the coming years. Not only do people own more
devices themselves, they also increasingly rely on services
provided by Cloud providers, which are typically hosted in
large-scale data centers. This brings up the issue of their
environmental impact: the carbon footprint of Information and
Communications Technology (ICT) accounts for 2% of global
emissions [1] and is expected to keep on growing [2]. Data
centers alone account for around 1.1% to 1.5% of global
energy consumption according to a report from 2010 (3]
These numbers indicate the global scale reached by ICT,
and shows the need for energy efficient ICT solutions. While
hardware solutions have been thoroughly researched, the same
cannot be said for software. As shown by Pinto et al. [4],
only since recent years the energy efficiency of application
software is taken into consideration (). It is expected that
increasing software energy efficiency can cause major changes
in the energy consumption of ICT, thanks to the global scale

can be automated by using special-purpose tools, among which
the Eclipse plugin JDeodorant [11] results to be the one which
is most commonly utilized [12].

In many studies, refactoring code smells was found to
have a positive impact on software maintainability [13], [14].
However, the impact on energy efficiency is only marginally
investigated [151, [16], [17], [18].

In this study, we aim to perform an exploratory analysis of
the impact of code smell refactoring on energy consumption
and performance in software applications. We selected five
different code smells (Feature Envy, Type Checking, Long
Method, God Class and Duplicated Code) that we automat-
ically detected and refactored in three open-source, ORM-
based Java software applicanons ‘The refactoring was applied
both in isolation all the occurrences of a single
smell) and in combintion (ic. on all the oceurrences of all
smells). We then performed a benchmark of each version of
the application by means of an automated test scenario and
we collected energy consumption and performance metrics in
a controlled environment. We also investigate whether well-
established object-oriented software metrics can be used as
indicators of the impact of refactoring the smells. This would
allow developers to use such metrics as proxies for identifying
and refactoring code smells with a high energy impact, thus
removing the need of performing dedicated measurements and
benchmarks. To the best of our knowledge, this is the largest
study on the energy impact of code smells.

The structure of the paper is as follows. Section II will
present related work on this topic. Section IIT and IV discusses
the definition and planning of our empirical experiment, along
with subject selection, hypothesis formulation and instru-
mentation. Section V' describes our experiment design and

Feature Envy
Type Checking
Long Method
God Class
Duplicated
Code

Verdecchia, Roberto & Saez, René & Procaccianti, Giuseppe & Lago, Patricia. (2018). Empirical Evaluation of
the Energy Impact of Refactoring Code Smells.

Lets dive in green

Green Software Engineering: granularity levels

o ARCHITECTURAL TACTICS
P> !

rC

: 5' 5

£ B

I

'O 3 DESIGN PATTERNS
L Z =

e =

PO Q

A

CODE SMELL

& Green tactics g

Build or not to build. That is the guestieor tactic

Motto: “The software (or feature) with the least impact is the one you don't build”
(avoided carbon footprint)

Build only software (or feature) “Useful, Usable and Used” (the 3U’s)
B Go/no go from high-level specifications

= Agile Methodology, Lean ICT, ...

All-purpose & domain-specific tactics

General software system (a.k.a practices) ML-based software system

reen Architectural 1actics for ~-Enable stems
° Avoid use of byte-code Green Architectural Tactics for ML-Enabled Syst

° Batch 1/0

[] Code m ig ration Data-centric Algorithm design Model optimization Model training

[Compiler optimization T1: Apply sampling ~ T6: Choose an energy- T12: Set energy T18: Use quantization- T21: Consider federated T28: Use informed

. . . techniques efficient algorithm consumption as a model aware training learning adaptation®
° Decrease algorlthmlc CompleX|ty Te; ;::l,l,l,e\,\ve redundant T7: Choose a lightweight constraint T19: Use checkpoints T22: Use computation "r;‘)rz ?a'éif-'mn the model
A data algorithm alternative T13: Consider graph during training partitioning if needed
® EfﬂCIent GU l T'gszeducc number of T8: Decrease model substitution T20: Design for T23: Apply cloud fog !r;;)(f;ewel““imr
° Free or unmap unneeded memory data features complexity T14: Enhance model memory i network archi puting paver
T4: Use input T9: Consider sparsity T24: Use energy-
° Keep 3rd party software up-to-date oo reinforcement leaming T15: Consider energy- efficient hardware
. T5: Use data projecti for energy efficiency aware pruning T25: Use power capping
° Lazy loading ¢ AL PrOJeCtion 0% Use dynamic T16: Consider transfer T26: Use energy-aware
idi H parameter adaptation learning scheduling

® Less frequent or aVOIdIng p0||lng T11: Use built-in library T17: Consider T27: Minimize

[] PUt appllcatlon to Sleep functions* knowledge distillation referencing to data*

o Reduce data redundancy H. Jarvenpaa, P. Lago, J. Bogner, G. Lewis, H. Muccini and |. Ozkaya, "A Synthesis of Green Architectural Tactics for

[Reduce memory leaks ML-Enabled Systems," 2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in

° Reduce QOS dynamically Society (ICSE-SEIS), Lisbon, Portugal, 2024, pp. 130-141.

) Reduce transparency and abstractions

T sty Pareney Cloud software system

L4 Use asynchronous 1’0 Tactic Quality Artribute Rationale

Y Use efficient queries Consolidation Availability During [‘Q/I rl'{ilgxi’:;tion some services

. may not be available.
[] USG JIT Compller Security Live VM migration over the network
. requires to transfer application code, Procaccianti, Giuseppe & Lago, Patricia & Lewis,
° Use low-level programming ‘V‘:fl;“:r:;:’t‘:a‘:ﬁ:g"ads‘ making them Grace. (2014). A Catalogue of Green Architectural
Trergy Modeling Modifiability Enerey Commm’ arecomponent- Tactics for the Cloud. Proceedings - Working IEEE/IFIP
specific and therefore must be reimple- Conference on Software Architecture 2014, WICSA
mented if the architecture changes. 2014. 41-44.
Procaccianti, G., Fernandez, H., & Lago, P. (2019). Green Software in Practice: Empirical ServicesAdeplation; Hlexibility Thetorchestralor,concentrates all service
,G., ks go, P. . - EMP! composition logic in a single node.

Validation and Assessment of Best Practices for Writing Energy-Efficient Software

Developer choice as a tactic

When it comes to writing a mobile app, you
choose either the native SDK or a
cross-platform SDK. There's no going back.

App size (KB)

0 o 0 o 0

Data transfer (KB) Energy (mAh)

Development

Swift N/A 216 N/A ? N/A 8,59

Kotlin 1200 N/A 944 N/A 21,60 N/A

KMM 3600 1600 932 ? 21,66 ?

Flutter 17500 18000 1190 ? 18,27 9,19

React Native 27300 13100 706 ? 19,45 11,62

= Cross-platform is a challenger

Ecological Impact of Native versus Cross-Platform
Mobile Apps: a Preliminary Study

Vincent Frattaroli Olivier Le Goaer Olivier Philippot
Inside App E2S UPPA, LIUPPA Greenspector
Paris, France Universite de Pau et des Pays de I'Adour tes. France
vincent frattaroli @insideapp.fr au, France ophilippot@greenspector.com

olivier legoser@univ-pau.fr

Abstract—What are the best mobile development approaches to
cut the carbon footprint? To answer this question, this experience
paper provides a life-size comparison of native versus cross-
platform frameworks prevailing in the mobile software industry
at the time of writing, namely Kotlin Multiplatform Mobile,
React Native and Flutter. To do this, we collected metrics related
to the package size, network traffic and battery drain issued
by a boikerplate application developed following the different
approaches. Our preliminary findings tend to show that the cross-
platform solutions perform quite well.
Index Terms—android, ios. kotlin, react, flutter, carbon

L. INTRODUCTION

Within a decade, the mobile software sector has seen
tremendous success. The landscape has also reorganised, lead-
ing to the overwhelming dominance of 2 mobile platforms
that now share the market: almost 71% for Android (Google)
and 27% for i0S (Apple). However, this market fragmentation
is still a concern for mobile developers. Either they opt for
native development, but have to write the app twice. or they
opt for cross-platform development to write a single code
base. The pros and cons of cach development method are
regularly debated, whether from a time-to-market or user
experience perspective [8]. But as climate change rises up
the global economic and political agenda, more and more
bile) developers are al d about the
of the software they create. It is therefore useful to compare
development practices from an environmental perspective until
the decarbonization of software becomes mainstream practice.

Unfortnately, the everyday mobile developers often finds
himself alone when facing this challenge. In [TT). a survey
of experienced developers showed that they are genuinely
interested in the energy consumption of software, despite the
fact that little knowledge is available. Authors of [I8] pin-
pointed the energy-related questions posed in Stack Overflow
by mobile developers, anxious to leam about power-related
problems that are encountered by others.

From the trenches, at the implementation stage, eco-friendly
mobile developers may refer to catalogues of code smells
inherited from embedded systems [T2] or mobile-specific
green patterns [2]. More recently, they may use a lint-like tool
to automatically clean their codebase of energy code smells
[4). [7). Before that, the choice of programming language

itself can have a small impact on energy consumption [3) in
particular contexts. But in the case of Android for example,
s choice is obviously limited, and it has been shown that
migrating from Java to Kotlin has no significant impact on
the energy efficiency of the app [T). However, an even earlier
choice that the development team has to make (and therefore
the hardest to change later) is the choice between native and
cross-platform development methods. Therefore, this paper
investigates whether this key design decision will have an
ecological impact once the mobile application is deployed on
a potentially large number of device

"o this end, we have formulated the following 3 research
questions:

« RQL: Does the development method affect the size of the

application archive file?

o RQ2: Does the development method affect the amount of

data the application exchanges over the network?

« RQ3: Does the development method influence the energy

consumption of the app?

By answering RQI, we are fighting the “fatware” syndrome,
iie. the inflation of software size over the last decades (c.g.
“TikTok on iOS is now 400Mb!), which marginalises owners
of low-end devices. In fact, the number of bytes downloaded to
install the application and its subsequent updates is constantly
increasing. This is particularly salient on mobile platforms,
where updates are frequent and automatic, regardless of new
differential download techniques. Answering RQ2 leads to
pinpoint how much the client side, network infrastructure and
server side are stressed over the Intemet. Indeed, it is not
unreasonable to assume that the more data that is exchanged
and processed, the more energy is likely to be consumed on
a global scale. Last but not least, by answering RQ3, we are
looking at the battery drain. The direct effect of this is an
increased demand for electricity (and its source productior
to charge the handheld device. The indirect effect is to shorten
the life of the device, since its lithium-ion battery has a limited
number of charge/discharge cycles. It is worth recalling that
the manufacture of new user device remains the main source
of greenhouse gas emissions in the ICT sector [6].

"Depending on the_county, lecticty production can be more or less
decarbonised. See fitps7Tapp clectictymaps.cony)

V. Frattaroli, O. Le Goaer, O. Philippot, “Ecological Impact of Native versus
Cross-Platform Mobile Apps: a Preliminary Study.” The 38th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW), 2023

e Green patterns g

Patterns for mobile apps

Dark Ul Colors

Decrease Rate

Dynamic Retry Delay

Avoid Extraneous Work
Race-to-idle

Open Only When Necessary
Push Over Poll

Power Save Mode

Sensor Fusion

No screen interaction

Reduce Size

User Knows Best
Inform Users
Enough resolution
Batch Operations
Suppress Logs
WiFi Over Cellular
Power Awareness
Kill Abnormal Tasks

Manual Sync - On Demand

Avoid Extraneous Graphics and Animations

Catalog of Energy Patterns for Mobile Applications

Luis Cruz - Rui Abreu

the date of receipt and acceptance should be inserted later

Abstract Software engincers make use of design patterns for reasons that range
from to code ibility. Several design patterns capturing
the body of knowledge of best practices have been proposed in the past, namely
creational, structural and behavioral patterns. However, with the advent of mobile
devices, it becomes a necessity a catalog of design patterns for energy efficiency.
In this work, we inspect commits, issues and pull requests of 1027 Android and
756 10S apps to identify common practices when improving energy efficiency. This
analysis yielded a catalog, available online, with 22 design patterns related to
improving the energy efficiency of mobile apps. We argue that this catalog might
be of relevance to other domains such as Cyber-Physical Systems and Internet of
Things. As a side contribution, an analysis of the differences between Android and
i0S devices shows that the Android community is more energy-aware.

Keywords Mobile applications; Energy Efficiency; Energy Patterns; Catalog;
Open source software.

1 Introduction

The i of providing d with more on how they can
modify mobile apps to improve energy efficiency has been reported in previous
works (Li and Halfond, 2014; Robillard and Medvidovic, 2016). In particular, mo-
bile apps often have energy requirements but developers are unaware that energy-
specific design patterns do exist (Manotas et al., 2016). Moreover, developers have
to support multiple platforms while providing a similar user experience (An et al.,
2018).

Luis Cruz

INESC ID and University of Porto, Portugal
E-mail: luiscruz@fe.up.pt

Rui Abreu

INESC ID and IST, University of Lisbon, Portugal
E-mail: rui@computer.org

Cruz, Luis & Abreu, Rui. (2019). Catalog of energy patterns for mobile
applications. Journal of Empirical Software Engineering. 24.

Patterns for web apps

Table 1: Energy patterns with applicability to web, classified to client (C) or Server (S), description, and examples.

Pattern Applicability C/S Description
Avoid Extraneous Graphics ~ ¢/ S Use battery-intensive graphics or animations with moderation.
and Animations eg. A website not loading heavy graphics until users interact with them.
Avoid Extraneous Work v S Present only relevant data or perform tasks that have a direct impact on the user experience.
e.g., Mozilla’s API in Listing 1 informs users for the page visibility to let audio/video pause.
Batch Operations v S Combine multiple operations to perform batch processing.
e.g., Web API from Microsoft to group several operations into a single HTTP request [12].
Cache [4 C Utilize caching mechanisms to reduce network load.
eg. A code example to cache an API response in the local storage [31].
Dark UI Colors v C Provide a web application with the dark UI color theme.
e, Facebook provides an option on the website to switch to a dark theme.
Decrease Rate [4 s Increase the time interval between requests to the backend.
eg. Library website refreshes the book availability only a few times a day.
Dynamic Retry Delay v S Use a systematic retry increasing time interval after each failed attempt to a resource, such as a database, or network.
e.g., In the Fibonacci series utilize a retry mechanism API to handle ab 1 conditions [31].
Enough Resolution v S Provide high-accuracy data only when strictly necessary.
e.g., AVIF and WebP image formats reduces file sizes in browsers [8, 14].
Inform Users partially C Inform users of the energy-intensive operations on the website.
e.g., Autoplay feature on YouTube consumes a significant amount of energy, but the user is not informed.
Kill Abnormal Tasks v S Provide means of interrupting energy-hungry operations.
e.g., A timeout to interrupt an abnormal operation [31].
Manual Sync - On Demand ¢/ S Perform tasks exclusively when requested by the user.

e.g., YouTube, with Autoplay feature off, plays song only when user clicks on it.

Energy Patterns for Web: An Exploratory Study

Pooja Rani Jonas Zellweger
rani@ifi.uzh.ch jonas zellweger@uzh.ch
University of Zurich

University of Zurich

Veronika Kousadianos
veronika. wu@students.unibe.ch
University of Bern

Zurich, Switzerland Zurich, Switzerland Bern, Switzerland
Luis Cruz Timo Kehrer Alberto Bacchelli
LG nl tim ifi.uzh.ch

Delft University of Technology
Delft, The Netherlands

ABSTRACT

As the energy footprint generated by software is increasing at an
alarming rate, understanding how to develop energy-cfficient ap-
plications has become a necessity. Previous work has introduced
catalogs of coding practices, also k y patterns. These

University of Bern
Bemn, Switzerland, Switzerland

University of Zurich, Switzerland
Zurich, Switzerland

LAY ABSTRACT

The information technology sector significantly affects the climate.

With our inereasing online activities, from chatting to accessing
medical history, software powering these services requires to be

patterns are yet limited to Mobile or third-party libraries. In this
study, we focus on the Web domain~—a main source of energy con
sumption. First we investigated whether and how Mobile energy
patterns can be ported to this domain and found that 20 patterns
could be ported. Then, we interviewed six expert web developers
from different companies to challenge the ported patterns. Most
developers expressed concerns for antipatterns, specifically with
functional antipatterns, and were able to formulate guidelines to lo-
cate these patterns in the source code. Finally, to quantify the effect
of Web energy patterns on energy consumption, we set up an auto-
‘mated pipeline to evaluate two ported patterns: “Dynamic Retry
Delay’ (DRD) and ‘Open Only When Necessary’ (OOWN). With
this, we found no evidence that the DRD pattern consumes less
energy than its antipattern, while the opposite is true for OOWN.
Data and Material: https://doi.org/10.5281/zenodo 8404487

CCS CONCEPTS

« Software and its engineering — Empirical software valida-
tion.

anokns

G i inergy patterns, Web appli
Software)uslmnlhlhly Cud.mg Practices, Energy consumption

ACM Reference Format:
Pooja Rani, Jonas Zellweger, Veronika Kousadianos, Luis Cruz, Timo Kehrer,
‘and Alberto Bacchelli 2024, Energy Patterns for Web: An Exploratory Study.
In Software Engineering in Society (ICSE-SEIS24), April 14-20, 2024, Lis-
bon, Portugal. ACM, New York, NY, USA, 11 pages. hitps://doi.org/10.1145/
3639475.3640110

o work for pe
dtrbuited

For al otheruses conactthe owner author().
ICSE-SEIS 20, April 14-20, 2024, Lihon, Portugal
© 2024 Copyright held by the ovner/authorts).
ACM ISBN 970-4-4007-0499-4 24

Hipe oo/ 104145365547 364010

Researchers in software engincering have been
xplring ge codingpracices, gy specifc dsgn ptterns
(ak: o - While
ik el peaetions e crplm':d for other domains in-
cluding Mobile, Web applications have been somewhat overlooked,
despite our daily heavy internet use. We focused on the existing
encrgy patterns from Mobile applications to Web applications. To
validate these ported energy patterns, we interviewed six profes-
sional web developers from various companics. Then, we tested
some patterns to see if these energy patterns indeed save any cn-
ergy. Our results showed that developers are unaware of the energy
ct d some p did not make a
while others consume more cnergy than their counterpart. In a
nutshell, our work highlights the knowledge gap between green
i
the trade-offs in energy practices for sustainable digital future.

1 INTRODUCTION
The ICT sector is estimated to generate up to 5.5% of world carbon
emissions and to consume 20% of all electricity [3]. Indeed. from
healtheare to communication, every industry prominently runs
on software, thus understanding and developing energy-efficient
software is urgent.

In this context, the Software Engineering (SE) research commu-
nity has started investigating green coding and energy patterns for
source code (17, 24). Encrgy &pmxlu dtslw patterns for source

to make their source code energy- eﬂnncm (24]. While rescarchers
have developed catalogs of energy patterns for Mobile applications
[10] and for deep learning libraries (35), some domains are still yet
to be covered, prominently the Web domain, which is particularly
relevant as its energy consumption is ever increasing [19).

Our goal is to gather and evaluate Web-specific energy patterns.
To this aim, we first attempt to port existing Mobile energy patterns
[10] to the Web domain. Then, to challenge our ported patterns,
we discuss them with six professional Web developers, by means
of in-depth structured interviews. In particular, we discuss how
understandable these patterns are, how they are perceived, and
whether they can be located in source code of Web applications.

P. Rani et al., "Energy Patterns for Web: An Exploratory Study," 2024
IEEE/ACM 46th International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS), Lisbon, Portugal, 2024, pp. 12-22.

Patterns for desktop apps

Documentation Archive

Energy Efficiency Guide for Mac Apps

Energy Essentials

Get Your App to Idle

Reduce Overhead

Prioritize Work

Schedule Work

Monitor and Respond to
Energy Use
Observe Signs of Energy
Leaks
Monitor Usage Regularly

Check the Battery Status
Menu

Respond to Thermal State
Changes

Test Performance

Qg8earch Documer

Observe Signs of Energy Leaks

When testing and debugging your app, watch for these signs of excessive energy use:

v Battery drain

v Activity when you expect your app to be idle
v An unresponsive or slow user interface

v Large amounts of work on the main thread
v High use of animations

v High use of view opacity

v Swapping

v Memory stalls and cache misses

v Memory warnings

v Lock contention

v Excessive context switches

v Excessive use of timers

v Excessive drawing to screen

v Excessive or repeated small disk I/0

v High-overhead communication, such as network activity with small packets and buffers

v Preventing device sleep

Enerqy Efficiency Guide for Mac Apps

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/SignsofEnergyLeaks.html#//apple_ref/doc/uid/TP40013929-CH22-SW1

Green Software Foundation’s patterns (¥

Web patterns

Avoid chaining critical requests
Avoid an excessive DOM size
Avoid tracking unnecessary data
Defer offscreen images
Deprecate GIFs for animated
content

Enable text compression

Keep request counts low

Minify web assets

Minimize main thread work
Optimize image size

Remove unused CSS definitions
Serve images in modern formats
Use server-side rendering for
high-traffic pages

Cloud patterns

Cache static data

Choose the region that is closest
to users

Compress stored data

Compress transmitted data
Containerize your workloads
Delete unused storage resources
Encrypt what is necessary
Evaluate other CPU architectures
Use a service mesh only if
needed

Terminate TLS at border gateway
Implement stateless design
Match utilization requirements of
virtual machines (VMs)

IA patterns

Optimize the size of AI/ML models
Use efficient file formats for Al/ML
development

Run Al models at the edge

Select a more energy efficient Al/ML
framework

Use energy efficient AI/ML models
Use sustainable regions for Al/ML
training

Leverage pre-trained models and
transfer learning for Al/ML
development

Select the right hardware/VM
instance types for Al/ML training
Adopt serverless architecture for
Al/ML workload processes

& Green smells g

Pioneering smells for mobile apps

Investigating the Energy Impact of Android Smells

Antonin Carette!, Mehdi Adel Ait Younes!, Geoffrey Hecht':?, Naouel Moha!, Romain Rouvoy??
1 Université du Québec & Montréal, Canada
2 University of Lille / Inria, France

3 IUE
hdi

France

t il ait_y

‘mohi naouel @ugam,ca, romain.rouvoy @inria fr

id code e bad i fon prac-
tices within Android applications (or apps) that may lead to poor
solare qulty Thoe code smlls are known o degrde the

e o SUE A s 28 pact o9 Sy SoutARY

llon. Howere, T sudi afe sl @1 putie (gt o8

i this paper;
e hacelors propose s o s ergmoaictle sgyruach el
HOT-PEPPER, o automatically correct code smells and evaluate

i mpact on anersy comorpiion. Corronlyy HOT-PRPPER
is able to automatieally correct three types of Android-specific
code sl Tntereal GettnfStisr, Momber Tgnring Mathod,
and HashMap Usage. HOT-PEPPER derives four versions of the
2ps by comcting cach detected smel independently, and all
..f them ot once. Hor-PEreEi is abl f report an the enerey
ion with a single user scenario
O et vty o o opon e ndeetd e shoms
that correcting the thrce aforementiond Android code smell

%
%
E~
G
g
if
8
s
]

are correced. We e tae advantags of the fleibilty of Hot.
PEPPER to investigate the impact of three picture smells (bad

s Smmeray o e W 90 GEIAED 108 gt e

the Android defaull bitmap format is the most energy

‘combination in Android apps. We believe that develo

benefit from our approach and results to guide their refactoring,

and thus improve the energy consumption of their mobile apps.
Keywords—Android, energy consumption, code smells, picture

L. INTRODUCTION

Mobile devices have known a huge success along the
last five years, for example Android’s sales increased by
more than S00% since 2011 [8]. With more than S0% of
devices sold worldwide, Android has become one of the most
popular operating system [6]. As the number of devices has
increased, the number of applications (or apps) also grew
rapidly along the last years. Therefore, the number of mobile
developers also increases. Apps are mostly writien using
‘popular Object-Oriented (or O0) programming languages like
Tava, Objective-C, Swift or C#. Yet, mobile development is
not as similar as traditional software development [54] and
develapers must consider he mobile speccis, Ao, the
user demand keeps increasing and forces mobile developers
t0 add new features and maintain their apps as quickly as
‘possible. Unfortunately, this pressure leads developers to adopt
bad implementation practices, also known as code smells [28].
Code smells can lead to cause resources leaks in CPU,

memory, battery, etc [25]. Leaks may deteriorate the quality of
the app in terms of stability, user experience, maintainability,
etc. Itis also important to note that more than 18% of Android
apps exhibit code smells [43]. Our previous studies have
investigated the impact of code smells on performance and
concluded that the correction of code smells improves the app
performance [34]. In particular, the major code smells that
impact the performance of Android apps are HashMap Usage
(HMU), Tnternal Getter/Setter (GS), and Member Ignoring
Method (MIM) [2, [20), [34]
Like performance, the battery lifespan or energy consumption
of an app is a critical quality criteria [1]. D. Li and W.
Halfond [39] have proven that two of the three performance
code smells listed above also have an energy impact on fictive
app. However, these experiments were not performed on a real
wser app.
this paper, we therefore propose an automated approach,

called Har PEPPER, supported by a framework for Android
developers that allows them to assess and improve the energy
consumption of their Android apps. Concretely, HOT-PEPPER
enables developers to detect and correct code smells, and eval-
uate their impact in terms of energy consumption in Android
apps. HOT-PEPPER relics on PAPRIKA, a static analysis tool
dedicated to the detection and correction of code smells in
Android apps

For the impact evaluation of code smells, HOT-PEPPER
relies on the tool NAGA-VIPER, which uses a physical mea-
surement device and monitors energy-related metrics (exe-
cution time, intensity, and voltage) on Android apps. For
the validation of HOT-PEPPER, we performed an empirical
study that allow us to answer to the following two research
questions:
RQy: Does the correction of Android code smells improve the
energy consumption of the mobile phone?
Finding: Yes, the correction of Android code smells improves
the energy consumption of the mobile phone. We observed that
the corection of at least one code smell reduces the encrgy
consumption of the mobile phone. Moreover, the correction
of all code smells reduces the energy consumption even more
significantly.
RQy: Do picture smells have an impact on the energy con-
sumption of the mobile phone?
Finding: Yes, studied picture smells have a bad impact on the
energy consumption of the mobile phone. We observed that

A. Carette, M. A. A. Younes, G. Hecht, N. Moha and R. Rouvoy,

"Investigating the energy impact of Android smells," 2017 IEEE 24th

International Conference on Software Analysis, Evolution and
Reengineering (SANER), Klagenfurt, Austria, 2017, pp. 115-126,

HashMap Usage

Internal Getter/Setter
Member Ignoring Method

+

“picture smell”

W
L J

On the Impact of Code Smells on the Energy
Consumption of Mobile Applications

Fabio Palomba®, Dario Di Nucci”, Annibale Panichella®, Andy Zaidman®,
Andrea De Lucia®

*University of Zurich - Binzmuhlestrosse 14, CII-8050 Zurich, Suitzeriand
©Vrije Universiteit Brussel - Pleinlaan 2, 1050 Elsene, Belgium
“Delft University of Technology - Mekelwe 2, 2628 CD Delft, The Netherlands
University of Salerno - Via Giovanni Paolo II, 132, 8408} Fisciano, Italy

Abstract

Context. The demand for green software design is steadily growing higher es-
pecially in the context of mobile devices, where the computation is often limited
by battery life. Previous studies found how wrong programming solutions have
a strong impact on the energy consumption.

Objective. Despite the efforts spent so far, only a little knowledge on the in-
fiuence of code smells, i.., symptoms of poor design or implementation choices,
on the energy consumption of mobile applications is available.

Method. To provide a wider overview on the relationship between smells and
energy efficiency, in this paper we conducted a large-scale empirical study on
the influence of 9 Android-specific code smells on the energy consumption of 60
Android apps. In particular, we focus our attention on the design faws that are
theoretically supposed to be related to non-functional attributes of source code,
such as performance and energy consumption.

Results. The results of the study highlight that methods affected by four code
smell types, i.c., Internal Setter, Leaking Thread, Member Ignoring Method, and
Slow Loop, consume up to 87 times more than methods affected by other code
smells. Moreover, we found that refactoring these code smells reduces energy
consumption in all of the situations.

Conclusions. Based on our findings, we argue that more research aimed at
designing automatic refactoring approaches and tools for mobile apps is needed.

Keywords: Code Smells, Refactoring, Energy Consumption, Mobile Apps

1. Introduction

Energy efficiency is becoming a major issue in modern software engineering,
as applications performing their activities need to preserve battery life. Al
though the problem is mainly concerned with hardware efficiency, in the recent
past researchers have successfully demonstrated how even software may be at

Preprint submitted to Information and Software Technology August 9, 2018

Internal Setter

Leaking Thread

Member Ignoring Method
Slow Loop

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, Andrea
De Lucia, On the impact of code smells on the energy consumption of
mobile applications, Journal of Information and Software Technology,
Volume 105, 2019, Pages 43-55,

Mobile-specific code smells: a taxonomy

.

Alternative

Check battery-efficient
APIs that have been
specifically designed to

substitute regular APIs

J

Leakage

Make sure that an
acquired resource is
always released, to avoid

unnecessary battery

\ drain

.

= Bottleneck

Avoid accumulation of
data or operations that
will require an energy
peak to be processed

[

g Power

Operations driven by the
battery status help
prolong the battery life

T2 Sobriety

Make reasonable
accommodations
between user experience
and more energy-efficient

\ variants /

.

1%z |dleness

When the app enters an
idle state, reduce the
workload accordingly

J

/Ol

.

& Batch

Grouping individually
costly operations allows
saving energy globally

J

¥* Release

Favor the compile-time
tasks that decrease the
energy footprint of the
deployment of the app

—— o —

https://qithub.com/cnumr/best-practices-mobile (40+ green code smells for Android)

@ Longevity

Pay attention to old and
low-end devices

—— - —

https://github.com/cnumr/best-practices-mobile

Bottleneck code smell example

. Internet-in-the-loop (IITL)
“Internet connection should not be opened in loops to
preserve the battery”

Repair

e Quick fix: use advanced Android API components
to do the job (e.g. DownloadManager)

e Long-term fix: rethink the dialogue between the
client and the server (e.g. REST API endpoints)

/2 Occurrence

You think nobody does that? Yet, around 4%* of OSS
Android projects have this issue

*preliminary results of an empirical study currently underway (LaBRI x LIUPPA)

Android code snippet

HttpURLConnection con;
URL myURL = ;

try {
for (int 1=0; 1<20; i++) {
myURL = new URL("http://myserver.com/file" + 1);

con = (HttpURLConnection) myURL.openConnection();

con.disconnect();
}
} catch() {
e.printStackTrace();

}

https://developer.android.com/reference/android/app/DownloadManager

Smell detection & hotspots

A (bad) green code smell is a potential energy-inefficiency issue. It has to be
spotted and then discussed by the development team, and ultimately, fixed

The purpose of a lint-like tool is to highlight /2 code smells in a codebase

ecoCode: a SonarQube Plugin to Remove Energy Smells from
Android Projects

Enforcing Green Code With Android Lint

G S by @) Olivier Le Goaér. 2021. Enforcing green oGt en oot Olivier Le Goaer and Julien Hertout. 2023.
‘:L:P code with Android lint. In Proceedings of s et e EcoCode: a SonarQube Plugin to Remove

s (apps) rusning on Android-

qualey stelbte of applicato
powere by i batery. Indeed, energy

A devices cont

‘massive wainstalatons pushdevelopers o ssunne i shre of

Hogsiag apps are a bl o bo
devclope. Yet, ther are very few toals avalabe 1o hep

responsibilty or encrgy wase The emergence ofsustanabilty
il

and technical agenda has accelerated ihis awarencss in recen
yeass. Sof

ot the small

B e e e e
e contmg e cveryy i, ndecd, Andr xmm
provides a cod scanaing ool cllod Anaroid it tht ca

conteibute o reducing the_ecologicol ootpriat of mmobile
Softvare on a gobal scale. Thus, appicaions o ll Kinds and
sizes mustbe concerned sbout thisesergy efficency, and sot

more cco-responsibie app.
Keords—green, Adroid, sl v bugs, energs, bairs
1 INTRopuCTION
have become more s

purty object e the et o
ncrssngly b, man sofars devlopers hevs e

‘The Android platform is st the foreiont o this cologieal

s the undispured leader in market sharc
(about §5%), it 2 billon monthly actve devices lobally
2017, 15 Google Play spplicatio < 26 millon
o svaisble in 2018, vith ted dovlosd
volume of 19 billon in 2017. Unforusately, mos developers
only have Lile to no knowledge about cnergy-cTiciency
mimon misconceptions are ofen made, and 4 gencel ack of
pee oling has to be deplored 3], And sill: older
plicaions would 1o be reengineered o ey,

fendly before beng relessed in an ulta-competiive market.

o Lt is & static_code snalysis tool
enabled by defultn the offical Andeoid Sudio IDE t0 casure

5t s megtoaonls £ et i s o
escanly onthe

e operaing
pltform instead of unforunatc and umnentional software
esign decisions 1]

On the one hand, operting systems have respondad by
offringan increasingly ntelligen eney management. String
from Andmid 60, Android inmoduces. two power.saving
Fatures called Daze and App Standby. Since Audroid 9.0, it
i an AT e csled Adpive ey OF s,

poor

companion of almost al ative code developers whose recent

Study (4] showed that they have confidence in s nspecton

ey evem e it 10 leam v things and xsprove

themselves. From this poiat of view, & Tiner 1s much more
elfetive than any kind of uideline

pracice 0 e auence. For fhese reasous,his pape argues

+ Androi lint s e ideal vectorby which geen coding babits

om b gy changd rogh syt g of

ool will allow
«m i wph:llmn u ey o o o

e of his papes i s ollows: Secion] describes

i i he Andid SDK. Sesion Tl cplains b he
g have been iplemented ss reen

S

a bief feedback on his type of
{ool in Secion V. Relued work is meationed in Sevion VI
before coneluding snd poviding perspectives i Section VIL.

the 35th IEEE/ACM International
Conference on Automated Software
Engineering (ASE '20). Association for

Computing Machinery, New York, NY, USA,

85-90.

ABSTRACT

encray viewpoiat Liteshav been s o adies spcific aspects

e softwaze developrs. Bt o 10 cusre cuibon it 1o

Cllaou], and very recently fo eney hotspos. Notiecabe

[1]

frov-in

CCS CONCEPTS
it enginsering — Applcaton specic dewlop-

et coomens.

KEYWORDS

o, enesgy bty smll, quality, 4t

{nspection, Enrgy sl ca e defned s srchnes i chicl
e exclgial) it wiich fft enegy consmtions gt
Encesycole sl iy the possbilty o efutoin, I i,

on by g deveopers woek I o i spied
scarch s caled seode (ands o “ccologia cod’,
elson s 3 Open SnsceSolbwae o G iy 202

‘oCade has esched th Mk Vil Produt g to szt

0
e 12 b . 5 AN S
gk 10 USRS 551

1 INTRODUCTION

Climate change may ntsee ke a s that showld concen An-
i bl devlopes, bt the eu i htthei work docs hive

How SonarQube was cxended o cope with his mew code el
befre e lusirae b i pesates i Section 4. The ol word s

2 ANDROID-SPECIFIC ENERGY SMELLS

i

e

st sscltly

il s e b et
Nt deslopers.praps even e thn athe developer,

21 Elements of Methodology

qualty i, s s sty o mntenabily. we pnpeie (e

ciec
efience el We mined o i documentation (D) wih the

o ok

e ST L LT

Higwaver, desple i expiical eidence, s sl may
e contronesie, ik o excrple he e enet o dsk Ul o

Energy Smells from Android Projects. In
Proceedings of the 37th IEEE/ACM
International Conference on Automated
Software Engineering (ASE '22).
Association for Computing Machinery, New
York, NY, USA

Food for thought

Good smell, Bad Smell

By nature, code quality tools are solely focused on bad code smells (penalties in
the quality score)

Sustainability calls for supporting also good code smells, as rewards @_to raise
the climate-consciousness of development teams

Incidentally, good points may mitigate bad points in the final quality score

Model-driven green code smell detection

Problem

Help green code smells face technological
heterogeneity at both levels: mobile platforms
and static code analysis tools

Solution (PoC)
“write once, rar detect everywhere”

DSL & code generation (MBSE principles)

Cross-Detection of Mobile-specific Energy Hotspots:
MBSE to the Rescue

a Brunschwig
Université de Pau et des Pays de I'Adour
Pau, Franc
leabrunschwig@univ-pau.fr

ABSTRACT

Regarding mobile applications (or apps), energy efficiency is be-
coming as important a quality attribute as security. One interesting
approach is to automatically pinpoint energy hotspots, i, areas
in the code base of an Android or i0S project that may negatively
impact battery life. The basic principle is to statically analyze the

input source code based on a growing catalogue of mobile-specific
energy code smell o anti-paters. Although some anti-paterns

Android and iOS, detectic be im-
pl:menled from scrach for ach mobile laform and foreach code
analyzer. This situation i inthe

race to develop environmentally friendly mobile apps. This paper
demonstrates how the MBSE can addsess this indusrial use case.

CCS CONCEPTS
- Software and its engincering — Domain specific languages.

KEYWORDS

Code Smell, Energy, Mobile app, Static analysis

ACM Reference Format:

Léa Brunschwi and Olivier Le Goaer. 2024. Cross-Detection of Mobile-
specific Energy Hotspots: MBSE to the Rescue. In ACM/IEEE 27th Inter-
national Conference on Model Driven Engineering Languages and Systems
(MODELS Companion "24). September 22-27, 2024, Lin2, Austria. ACM, New
York, NY. USA, 5 pages. https://doi org/10.1145/3652620 3687797

1 INTRODUCTION

Model-Based Software Engineering (MBSE) quickly became of in-
terest in the field of mobile applications due to the heterogeneity
of the underlying platforms. That was quite true ten years ago

Olivier Le Goaér
Université de Pau et des Pays de I'Adour
Pau, France
olivierlegoaer@univ-pau.fr
Yet, the story doesn’t end there: the heterogeneity challenge

strikes again when it comes to detecting and fixing flaws in the

g
this duplicate effort is becoming very important for developers that
target both platforms (ic. a large majority). It is important to note
that submitting the codebase to a lint-type tool is a widespread
practice for improving the overall quality of the code delivered
by teams. Doing it for “green quality” is a new trend driven by a
climate-conscious tech landscape.

Intuition tells us that there are energy-related flaws (or anti-
patterns) tht are the same from one platform to another and that
it should be possible to detect them, even if Android and iOS are
different, in terms of languages used and APIs provided. Unfor-
tunately, hand-developed detection rules are a complex piece of
engineering and, hence, a tedious fask.

In this research paper, we introduce domain-specific languages
(DSLs) designed to describe code smells and map them with the
mobile language of choice, ultimately generating detection rules
for the static analysis tools of our choice.

“The remainder of this paper follows this organization: Section 2
lays out the theoretical and practical foundations for this study.
Section 3 presents a motivational example, and Section 4 outlines.
the development of meta-models for describing and translating
energy code smells across development environments. Finally, we
contrast our approach with similar works in Section 5 and outline
conclusions and future work in Section 6.

2 BACKGROUND
Energy code smells are surface symptoms, indicating that some-

during the OS war, and it's still true today with the
platforms - Android and iOS - which together account for 99% of
the market. Over the years, the research literature has focused on
producing native code for both platforms from a single code base,
following the principles of MDA/MBSE like in [1, 7, 13). There is
no doubt that this research craze has declined with the arrival of
mature and shiny cross-platform solutions such as Flutter, React
Native and Kotlin Multiplatform Mobile.

ng with energy efficiency. They imply that
the app’s source code could be improved or that additional effort
could be putinto it 1f they are well-defined, it is possible to review
the entire codebase automatically and highlight them, so-called
energy hot spots, thus requiring the developer’s attention.

2.1 Mobile-Specific Energy Code Smells

part pe
distributed

specific energy code smells was
yielded by O. Le Goaer as a digital common [8]. This work drew
significant from the 22 energy patterns for mobile ap-

s than the

aiborts) i e honere Aescing whh ot pemted T ey otbervis o

i e
MODELS Companion 24, Sptember 2 Linz, Austria
o 2024 Ce licensed

f Cruz et al. (3] but with the special objective of turning.
gnod/bnd practices into statically detectable code smells. The em-
pirical catalogue now provides more than 40 energy code smells,
divided into eight categories, and targets both mobile platforms.

ACM ISBN 979-8.4007-0622.6724
ttps/dotorg/10.1145/3652620.3687797

2 Gie.
concerns), but for the sake of simplicity, this paper will only focus

Léa Brunschwig and Olivier Le Goaér. 2024. Cross-Detection of Mobile-specific Energy
Hotspots: MBSE to the Rescue. In Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion '24). ACM, New York, NY, USA, 518-522.

The era of Al-powered detection

On Android, “Use a cache” is a well-known best practice, but has various
meanings and seems undetectable because it is implementation-free:
cached HTTP requests

memoized functions
recycled views (a.k.a. “ViewHolders”)

Visiting nodes of an abstract syntax tree is doing things the old way. Artificial
Intelligence (LLM) is the future of code smell detection (and fix thereof) &

ecoCode + brain = ecoBrain

ggrousset@acBook-Pro-de-Gilles] ~/Desktop/ecobrain run ecobrain check FibonacciCache.java
1: v

) i

return cache.

result = getFibonacci(n - 1) + getFibonacci(n -
cache.put(n, result);
return result; // [ecobrain] Here, if the Fibonacci number has already been computed (i.e., it exists in the cache), it is returned from the cache il
stead of being recomputed.
// lecobrain] This line is where the cache is accessed to retrieve the already computed Fibonacci number.

public static (String[] args) { // [ecobrain] If the Fibonacci number hasn't been computed before, it's computed and then stored in the cache fq
r future usage.
FibonacciCache fibonacciCache vew FibonacciCache();
50; // You can change this value to test with other numbers
startTime = System. 0);
fibonacciValue = fibonacciCache. (n);
endTime = System. 0);
System. A ("Fibonacci of " + n + " is " + fibonacciVal
System. ("Computed in " + (endTime - startTime) / 1) + " milliseconds");

Successful attempt to automatically detect a memoized Java method (here Fibonacci). Thanks Gilles G. :) Source code

https://drive.google.com/file/d/1JDuE6haJyH96dZIdNDUdVoCvTlR0ABkB/view

Conclusion

Takeaways for green software practitioners

Building Green Software is not building software as usual
Green Software Engineering (GSE) must provide actionable practices
Green tactics, patterns and smells embody 3 levels of best practices

Green software only has an impact at scale, and automation is key

Greener |s Coming...

EX
GOUVERNEMENT
P

OREILLY"

Building

Stratégie Green Software
d'accélération e et
Numérique

eécoresponsable

and Operations

Innover pour le développement d'une économie
numérique écoresponsable francaise, compétitive
et souveraine

Dossier de presse
4 juillet 2023

Anne Currie, Sarah Hsu
& Sara Bergman
Foreword by Adrian Cockcroft

i § Government task force (2023) £ Potential bestseller (2024)

