
Green Software
TACTICS, PATTERNS & SMELLS

Dr. Olivier Le Goaër, LIUPPA © 2024

An “old” story…
🌐 A holistic approach to green software

✨ Sustainability as a quality attribute of
software (i.e. non-functional property)

🛠 An increasing demand for tooling from
software practitioners (mainly devs)

Stefan Naumann et al., “The GREENSOFT Model: A reference model for green
and sustainable software and its engineering”, Sustainable Computing:
Informatics and Systems, Volume 1, Issue 4, 2011, pages 294-304

…more acute than ever

“Green Coding is the act of designing, developing,
maintaining, and (re-)using software systems in
a way that requires as little energy and natural
resources as possible. Green Coding methods or
practices thus mean any action or use of
technology intended and suitable to further this.”

Dennis Junger et al., Potentials of Green Coding, Intermediate Report of the Project ”Potentials of Green Coding“
for the ISOC Foundation, 2024

Dennis Junger et al., Potentials of Green Coding, INFORMATIK 2023 - Designing Futures: Zukünfte gestalten,
pp. 1289-1299

SoftwareGreen Engineering

Topics at GREENS’25 (co-located ICSE)

https://greensworkshop.github.io/

https://greensworkshop.github.io/

Burn your idols

Green language is no silver bullet
Mobile end users are very sensitive to battery life,
and the world's leading platforms are spending 💰 to
improve the energy efficiency of their ecosystems.

Yet they are pushing Kotlin (formerly Java) and Swift
(formerly Objective-C) to write software at large 🤔

⇒The answer rather lies in your design choices
Rui Pereira et al. “Ranking Programming Languages by
Energy Efficiency”. Science of Computer Programming,
volume 205. Elsevier, 2021.

OOP Design patterns

A. Noureddine & O. Le Goaer, “Investigating the Impact of Software Design
Patterns on Energy Consumption”. - under submission -, 2024

⇒Variations below 5% = negligible

OOP Refactorings

⇒ fairly neutral
Zakaria Ournani, Romain Rouvoy, Pierre Rust, Joel Penhoat. Tales from the Code #1: The Effective Impact
of Code Refactorings on Software Energy Consumption. ICSOFT 2021 - 16th International Conference on
Software Technologies, Jul 2021, Virtual, France.

OOP Code smells

⇒ Effective or counter-productive?
Who's right?

Feature Envy
Type Checking
Long Method
God Class
Duplicated
Code

Built-in
code
smells of
PyLint

Verdecchia, Roberto & Saez, René & Procaccianti, Giuseppe & Lago, Patricia. (2018). Empirical Evaluation of
the Energy Impact of Refactoring Code Smells.

Brosch, Christoph (2023): Influence of Static Code Analysis on Energy Consumption
of Software. EnviroInfo 2023.

Let's dive in green

Green Software Engineering: granularity levels

ARCHITECTURAL TACTICS

DESIGN PATTERNS

CODE SMELL

A
B

S
TR

A
C

TIO
N

G
R

E
E

N
 IM

PA
C

T

A
U

TO
M

ATIO
N

 (C
A

S
E

 TO
O

L)

🍃 Green tactics 🍃

Build or not to build. That is the question tactic
Motto: “The software (or feature) with the least impact is the one you don't build”
(avoided carbon footprint)

Build only software (or feature) “Useful, Usable and Used” (the 3U’s)

🚦Go/no go from high-level specifications

⇒ Agile Methodology, Lean ICT, …

All-purpose & domain-specific tactics
ML-based software system

Cloud software system

Procaccianti, G., Fernández, H., & Lago, P. (2019). Green Software in Practice: Empirical
Validation and Assessment of Best Practices for Writing Energy-Efficient Software

General software system (a.k.a practices)

● Avoid use of byte-code
● Batch I/O
● Code migration
● Compiler optimization
● Decrease algorithmic complexity
● Efficient GUI
● Free or unmap unneeded memory
● Keep 3rd party software up-to-date
● Lazy loading
● Less frequent or avoiding polling
● Put application to sleep
● Reduce data redundancy
● Reduce memory leaks
● Reduce QoS dynamically
● Reduce transparency and abstractions
● Static GUI
● Use asynchronous I/O
● Use efficient queries
● Use JIT compiler
● Use low-level programming

H. Järvenpää, P. Lago, J. Bogner, G. Lewis, H. Muccini and I. Ozkaya, "A Synthesis of Green Architectural Tactics for
ML-Enabled Systems," 2024 IEEE/ACM 46th International Conference on Software Engineering: Software Engineering in
Society (ICSE-SEIS), Lisbon, Portugal, 2024, pp. 130-141.

Procaccianti, Giuseppe & Lago, Patricia & Lewis,
Grace. (2014). A Catalogue of Green Architectural
Tactics for the Cloud. Proceedings - Working IEEE/IFIP
Conference on Software Architecture 2014, WICSA
2014. 41-44.

Developer choice as a tactic
When it comes to writing a mobile app, you
choose either the native SDK or a
cross-platform SDK. There's no going back.

⇒Cross-platform is a challenger

V. Frattaroli, O. Le Goaer, O. Philippot, “Ecological Impact of Native versus
Cross-Platform Mobile Apps: a Preliminary Study.” The 38th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW), 2023

🍃 Green patterns 🍃

Patterns for mobile apps
Dark UI Colors Reduce Size

Decrease Rate User Knows Best

Dynamic Retry Delay Inform Users

Avoid Extraneous Work Enough resolution

Race-to-idle Batch Operations

Open Only When Necessary Suppress Logs

Push Over Poll WiFi Over Cellular

Power Save Mode Power Awareness

Sensor Fusion Kill Abnormal Tasks

No screen interaction Manual Sync - On Demand

Avoid Extraneous Graphics and Animations

Cruz, Luís & Abreu, Rui. (2019). Catalog of energy patterns for mobile
applications. Journal of Empirical Software Engineering. 24.

Patterns for web apps

…

P. Rani et al., "Energy Patterns for Web: An Exploratory Study," 2024
IEEE/ACM 46th International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS), Lisbon, Portugal, 2024, pp. 12-22.

Patterns for desktop apps
Energy Efficiency Guide for Mac Apps

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/power_efficiency_guidelines_osx/SignsofEnergyLeaks.html#//apple_ref/doc/uid/TP40013929-CH22-SW1

Green Software Foundation’s patterns
Web patterns

● Avoid chaining critical requests
● Avoid an excessive DOM size
● Avoid tracking unnecessary data
● Defer offscreen images
● Deprecate GIFs for animated

content
● Enable text compression
● Keep request counts low
● Minify web assets
● Minimize main thread work
● Optimize image size
● Remove unused CSS definitions
● Serve images in modern formats
● Use server-side rendering for

high-traffic pages

IA patterns

● Optimize the size of AI/ML models
● Use efficient file formats for AI/ML

development
● Run AI models at the edge
● Select a more energy efficient AI/ML

framework
● Use energy efficient AI/ML models
● Use sustainable regions for AI/ML

training
● Leverage pre-trained models and

transfer learning for AI/ML
development

● Select the right hardware/VM
instance types for AI/ML training

● Adopt serverless architecture for
AI/ML workload processes

Cloud patterns

● Cache static data
● Choose the region that is closest

to users
● Compress stored data
● Compress transmitted data
● Containerize your workloads
● Delete unused storage resources
● Encrypt what is necessary
● Evaluate other CPU architectures
● Use a service mesh only if

needed
● Terminate TLS at border gateway
● Implement stateless design
● Match utilization requirements of

virtual machines (VMs)
● …

🍃 Green smells 🍃

Pioneering smells for mobile apps

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Andy Zaidman, Andrea
De Lucia, On the impact of code smells on the energy consumption of
mobile applications, Journal of Information and Software Technology,
Volume 105, 2019, Pages 43-55,

Internal Setter
Leaking Thread
Member Ignoring Method
Slow Loop

HashMap Usage
Internal Getter/Setter
Member Ignoring Method
+
“picture smell” 💡

A. Carette, M. A. A. Younes, G. Hecht, N. Moha and R. Rouvoy,
"Investigating the energy impact of Android smells," 2017 IEEE 24th
International Conference on Software Analysis, Evolution and
Reengineering (SANER), Klagenfurt, Austria, 2017, pp. 115-126,

Mobile-specific code smells: a taxonomy

🔄 Alternative

Check battery-efficient
APIs that have been

specifically designed to
substitute regular APIs

🚰 Leakage

Make sure that an
acquired resource is

always released, to avoid
unnecessary battery

drain

⌛ Bottleneck

Avoid accumulation of
data or operations that
will require an energy
peak to be processed

🪫 Power

Operations driven by the
battery status help

prolong the battery life

⚖ Sobriety

Make reasonable
accommodations

between user experience
and more energy-efficient

variants

💤 Idleness

When the app enters an
idle state, reduce the
workload accordingly

📦 Batch

Grouping individually
costly operations allows
saving energy globally

⚙ Release

Favor the compile-time
tasks that decrease the
energy footprint of the
deployment of the app

👴 Longevity

Pay attention to old and
low-end devices

https://github.com/cnumr/best-practices-mobile (40+ green code smells for Android)

https://github.com/cnumr/best-practices-mobile

Bottleneck code smell example
👃 Internet-in-the-loop (IITL)
“Internet connection should not be opened in loops to
preserve the battery”

🩹 Repair

● Quick fix: use advanced Android API components
to do the job (e.g. DownloadManager)

● Long-term fix: rethink the dialogue between the
client and the server (e.g. REST API endpoints)

🔎 Occurrence

You think nobody does that? Yet, around 4%* of OSS
Android projects have this issue

*preliminary results of an empirical study currently underway (LaBRI × LIUPPA)

Android code snippet

https://developer.android.com/reference/android/app/DownloadManager

Smell detection & hotspots
A (bad) green code smell is a potential energy-inefficiency issue. It has to be
spotted and then discussed by the development team, and ultimately, fixed

The purpose of a lint-like tool is to highlight 🔎 code smells in a codebase

🕹
 live demo

Olivier Le Goaer and Julien Hertout. 2023.
EcoCode: a SonarQube Plugin to Remove
Energy Smells from Android Projects. In
Proceedings of the 37th IEEE/ACM
International Conference on Automated
Software Engineering (ASE '22).
Association for Computing Machinery, New
York, NY, USA

Olivier Le Goaër. 2021. Enforcing green
code with Android lint. In Proceedings of
the 35th IEEE/ACM International
Conference on Automated Software
Engineering (ASE '20). Association for
Computing Machinery, New York, NY, USA,
85–90.

Food for thought

Good smell, Bad Smell
By nature, code quality tools are solely focused on bad code smells (penalties in
the quality score)

Sustainability calls for supporting also good code smells, as rewards 🍭 to raise
the climate-consciousness of development teams

Incidentally, good points may mitigate bad points in the final quality score

Model-driven green code smell detection
Problem

Help green code smells face technological
heterogeneity at both levels: mobile platforms
and static code analysis tools

Solution (PoC)

“write once, run detect everywhere”

DSL & code generation (MBSE principles)

Léa Brunschwig and Olivier Le Goaër. 2024. Cross-Detection of Mobile-specific Energy
Hotspots: MBSE to the Rescue. In Proceedings of the ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
Companion '24). ACM, New York, NY, USA, 518–522.

The era of AI-powered detection
On Android, “Use a cache” is a well-known best practice, but has various
meanings and seems undetectable because it is implementation-free:

● cached HTTP requests
● memoized functions
● recycled views (a.k.a. “ViewHolders”)
● …

Visiting nodes of an abstract syntax tree is doing things the old way. Artificial
Intelligence (LLM) is the future of code smell detection (and fix thereof) 🧠

ecoCode + brain = ecoBrain

Successful attempt to automatically detect a memoized Java method (here Fibonacci). Thanks Gilles G. :) Source code

🤖
 ChatOpenAI

https://drive.google.com/file/d/1JDuE6haJyH96dZIdNDUdVoCvTlR0ABkB/view

Conclusion

Takeaways for green software practitioners
Building Green Software is not building software as usual

Green Software Engineering (GSE) must provide actionable practices

Green tactics, patterns and smells embody 3 levels of best practices

Green software only has an impact at scale, and automation is key

Greener Is Coming…

 Potential bestseller (2024) Government task force (2023)

