MegaM@Rt²

MegaModelling at Runtime

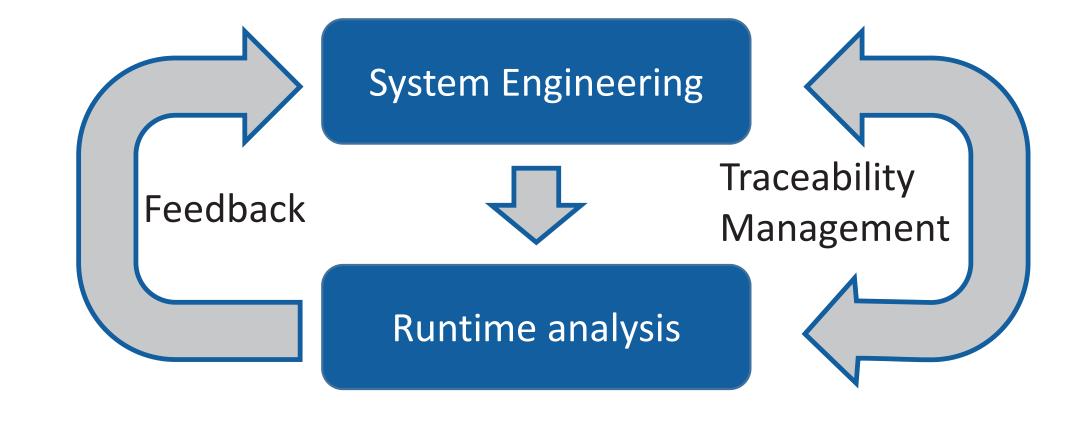
Objectives

MegaM@Rt will create a framework incorporating methods and tools for continuous development and validation. It will leverage the advantages in scalable model-based methods to provide benefits in significantly improved productivity, quality and predictability of large and complex industrial systems.

- Significantly increased productivity and quality of system development and shorten time-to-market for complex systems
- Reinforced European scientific and technological leadership in the design of complex systems
- Improved competitiveness of European companies by reducing design and maintenance costs as well as the time-to-market

Relevance and Impact

Model-Based Engineering principles and techniques have already shown promising capabilities. However, they have generally failed in terms of:


- Scalability to support real world scenarios implied by the full deployment and use of complex electronic components & systems
- Efficient traceability, integration and communication between two fundamental system levels: design time and runtime, especially for verification and validation of non-functional properties

MegaM@Rt brings together prominent tool vendors and research organisations with state-of-the-art methods and tools that will be validated in 9 highly relevant European industry case studies. The end users from the maritime, railway, telecom and other industrial domains will drive the project by providing real-world requirements and case studies as well as by validating and endorsing the MegaM@Rt results.

Technical Innovation

The main technical innovation topics of MegaM@Rt are:

- Scale up the use of model-based techniques by offering proper methods and related tooling interacting between both design time and runtime,
- Enhance and combine existing model-based techniques
- Provide efficient traceability support between design time and runtime models
- Collect and analyse runtime information to provide feedback to design phase
- Validate the designed and developed approach in concrete industrial cases involving complex systems
- Design and deploy a scalable megamodelling approach to manage all the involved artifacts (e.g. the many different models, corresponding workflows & configurations) and to better tackle their large diversity in terms of nature, number, size & complexity.

SOFTEAM

THALÈS RT SMARTESTING SOLUTIONS & SERVICES **CLEARSY**

ARMINES UNIVERSITE DE PAU ET DES PAYS DE L'ADOUR

Spain

ATOS SPAIN UNIVERSIDAD DE CANTABRIA UNIVERSITAT OBERTA DE CATALUNYA / ICREA

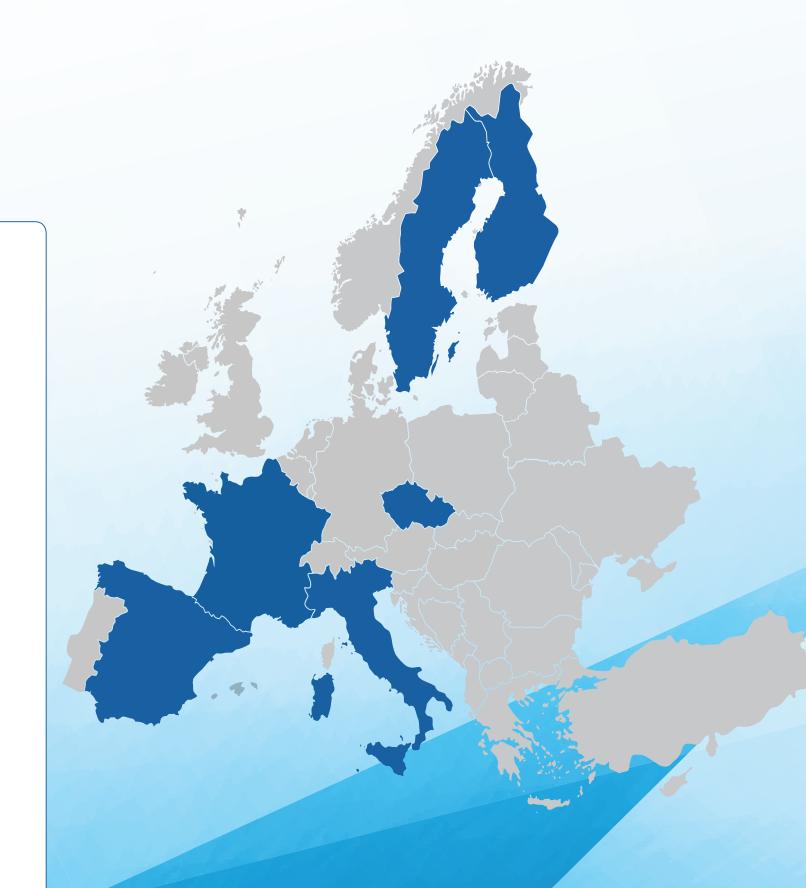
IKERLAN FENT INNOVATIVE SOFTWARE SOLUTIONS

Italy

TEKNE UNIVERSITA DEGLI STUDI DELL'AQUILA INTECS RO TECHNOLOGY

Finland

ÅBO AKADEMI UNIVERSITY AINACOM SPACE SYSTEMS FINLAND NOKIA


VTT CONFORMIQ

Sweden

BOMBARDIER TRANSPORTATION SWEDEN AB **VOLVO CONSTRUCTION EQUIPMENT** MÄLARDALEN UNIVERSITY SICS SWEDISH ICT VÄSTERÅS

Czech Republic

BRNO UNIVERSITY OF TECHNOLOGY CAMEA

Project Coordinator Gunnar Widforss

Institution

MÄLARDALEN UNIVERSITY

Email

gunnar.widforss@mdh.se

Website

www.megamart2-ecsel.eu

Start

Duration 1-4-2017 36

Total investment

€M 19.5

Participating organisations

Number of countries

