
Cross-Detection of Mobile-specific Energy Hotspots:
MBSE to the Rescue

Léa Brunschwig and Olivier Le Goaër

23rd September 2024. Linz, Austria

Background
Mobile-Specific Energy Code Smells

2

Energy code smells

Indicate that something is
potentially wrong with
energy efficiency.

Idleness

Power

Sobriety

Keep Screen On

Rigid Alarm

Charge Awareness

Save Mode Awareness

Thrifty Geolocation

Dark Mode

Brightness Override

Animation-free

Torch-free

Leakage

Sensor Leak

Mobile-specific Best Practices for Sustainable Software.
http://github.com/cnumr/best-practices-mobile
Olivier Le Goaër. 2024

○ 40+ code smells

○ 8 categories

○ Android & iOS

http://github.com/cnumr/best-practices-mobile

3

10 cross-platform Energy Code Smells

Leakage

Sensor Leak Always remember to unsubscribe from a sensor once you have subscribed to it to avoid wasting data acquisition

Idleness

Keep Screen On Never prevent the device from going to sleep after a certain time to avoid draining the battery in just a few hours

Rigid Alarm Applications are strongly discouraged from using exact alarms unnecessarily as they reduce the OS's ability to minimize battery use

Power

Charge Awareness Adapt workload accordingly when the device is connected/disconnected to a power station or switch to a different battery level

Save Mode Awareness Adapt workload accordingly when energy save mode is activated intentionally by the end-user or by the system

Sobriety

Thrifty Geolocation Configure the geolocation sensor (aka GPS) in a less accurate mode and with a lower position update rate

Dark Mode Dark themes should be preferred to light themes as this can affect the AMOLED display under certain conditions

Brightness Override Don't override the screen brightness value, which automatically adjusts to ambient light to save energy

Animation-free Avoid extraneous animations, which consume a lot of power as they require the CPU, GPU and screen to be active

Torch-free Don't programmatically activate the LED flashlight, a notoriously power-hungry component

Background
Energy Code Smells Detection

4

Energy code smells

Indicate that something is
potentially wrong with
energy efficiency.

Energy Hotspot
detected

Via static code analysis
tools (a.k.a linters)

RefactorDiscard😶 No action

Detection was wrongCan’t refactor

…

ecoCode
Energy Code Smells Detection with SonarQube™

5

Olivier Le Goaër and Julien Hertout, "ecoCode: a SonarQube
Plugin to Remove Energy Smells from Android Projects", The
37th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2022)
https://github.com/green-code-initiative/ecoCode-android 💾

https://github.com/green-code-initiative/ecoCode-android

Motivating Example
Torch-free

6

“Don't
programmatically
activate the LED

flashlight, a
notoriously

power-hungry
component.”

Targeted OS

Android

iOS

Flutter

React
Native

Objective-C

JavaScript

Kotlin

Java

Swift

Dart

Code QL
PMD

Targeted Language
Targeted Static
Analysis Tool

⭐ Custom

⭐

⭐

⭐

⭐

⭐

Energy Code
Smell

Motivating Example
Requirements

7

RQ1: Energy code smells should be described at the
highest abstraction level, independent of any specific
programming language

RQ2: Energy code smells should be defined once and
reused for as many mobile code translations as necessary.

RQ3: Translations into a targeted language should be
independent of any specific static analysis tool.

RQ4: The definition of an energy code smell, its
translation, and the code generation model for a static
analysis tool should be achievable iteratively and by
different actors.

Proposed Approach
Energy Code Smell meta-model

8

Name: Torch-free
Description: Don’t programmatically activate the LED flashlight, a notoriously
power-hungry component
Score: -2
#Sobriety @Flashlight

1
2

3
4

Smell: “/../energy-smell/Torch-free”
@Java {

Method.“setTorchMode” in “android.hardware.camera2.CameraManager” == “true”
}
@Swift {

“AVCaptureTorchMode.on” OR “setTorchModeOn” OR “TorchMode.on”
}

Proposed Approach
Platform-Specific Energy Code Smell meta-model

9

1
2
3
4
5
6
7

Proposed Approach
Model-to-Code Transformation (SonarQube API use case)

10

public class TorchFreeRule extends ArgumentValueOnMethodCheck {
 ...
 public TorchFreeRule() {
 super("setTorchMode", "android.hardware.camera2.CameraManager", true);
 }
 @Override
 protected void checkConstantValue(Optional<Object> optionConstantValue, Tree reportTree, Object

constantValueToCheck) {
 if(optionalConstantValue.isPresent() && (optionalConstantValue.get().equals(constantValueToCheck)

|| ((Boolean) optionalConstantValue.get()))) {
 reportIssue(reportTree, getMessage());
}}}

1
2
3
4
5
6
7

8

9
10

public class TorchFreeRule extends SwiftRuleCheck {
 ...
 @Override
 public void apply(ParseTree tree) {
 if (tree instanceof Swift5Parser.ExpressionContext) {
 Swift5Parser.ExpressionContext id = (Swift5Parser.ExpressionContext) tree;
 String expressionText = id.getText();
 if (expressionText.contains("AVCaptureTorchMode.on") || expressionText.contains("setTorchModeOn") ||

expressionText.contains("torchMode=.on")) {
 this.recordIssue(id.getStart().getStartIndex(), DEFAULT_ISSUE_MESSAGE);
}}}}

1
2
3
4
5
6
7
8

9
10

11

Questions?

