
The road to green
code (with Sonar)

olivierlegoaer

The limits to (software) growth
How it started (2011) How it's going (2024)

©Tristan Nitot

The software eco-*

 Software eco-design

eco-coding
eco-writing code
eco-programmiNg

green coding

“the most responsible software is
the one we don't build”

https://www.linkedin.com/posts/charlinerageade_opensource-osxp-fairphone-activity-6998279876692566016-GZbU/

(S)Low-tech

Fork in the road

 High-tech
 + eco-coding

First law of eco-coding

energy = (more code)2

e = mc2

Energy versus Performance

Computer/Device A B

Energy (in joules) 30 20

Time (in seconds) 10 20

Energy-efficiency vs Run-time-efficiency

Basic eco-coding incentives
💰 Money

The fewer resources SmartContracts* consume,
the lower the costs

⭐ Reputation

Bad reviews left on app stores can ruin your
business

*programs running within a Blockchain

French roadmap

JUILLET
Stratégie d’accélération

numérique
écoresponsable

Haut Comité pour le
Numérique
Écoresponsable

 2023

Towards an eco-score…
cyber-score (effective in oct. 2023) eco-score (elusive goal)

source source

https://twitter.com/L_Lafon/status/1319261990431412225?s=20&t=Q1Oc7Ehd_p6BsS6rw_RnfA
https://www.linkedin.com/pulse/logiciels-1-eco-score-2-possibilit%C3%A9s-olivier-le-goa%C3%ABr-/

What if an eco-score?
Information

App stores display the eco-score to the
end-users (and include it in their ranking algorithm)

Regulation

(Truly sustainable) Cloud providers refuse the
deployment of program lower than D

A

D

eco-score

Ranking eco-friendly apps

source: pCloud (2021)
source: Atos & Greenspector (2020)

https://www.pcloud.com/fr/secret-phone-killers
https://greenspector.com/wp-content/uploads/2020/01/Atos-GREENSPECTOR-TOP30-benchmark-english.pdf

Think global & mobile-first

Ecological impact

Direct Indirect

10% (FR)

25%
90% (FR)

75%

Lifespan
(...more devices!!!)

Energy
consumption

eq. CO2, water, abiotic resources

🔋Li-ion battery wear

Loosely adapted from “iNUM : impacts environnementaux du numérique en France” (Jan. 2021)

https://www.greenit.fr/wp-content/uploads/2021/02/2021-01-iNum-etude-impacts-numerique-France-rapport-0.8.pdf

Limited impacts

Green programming languages?
You don't always have a choice!

What about the runtime?

Mobile apps are programs, but rarely algorithms*

Programming language: there is no silver bullet!

Rui Pereira et al. “Ranking Programming Languages
by Energy Efficiency”. Science of Computer
Programming, volume 205. Elsevier, 2021.*mathematically provable object

Code smells: The good old classics

● Feature Envy
● God Class
● Blob Class
● Long Method
● Long Parameter List

...

Code smells: The new challengers

● Internal Setter
● Leaking Thread
● Leaking Inner Class
● Member Ignoring Method
● No Low Memory Resolver
● Hashmap Usage
● Init OnDraw

...

Greater impacts

Android-specific matters
Battery-killers are nestled at the platform-level, not the language-level

Every Android project has a well-defined, meaningful structure

There are lots of interesting things to inspect:

Energy-greedy components
Hardware-related Component Avg. energy consumption (J)

display 139.784567875382

camera 84.1856142588254

microphone 81.8998646885348

gravity 71.3078291080087

magnetic_field 69.6877663025097

gyroscope 69.3777997221

accelerometer 67.9535327322522

cpu 66.6925401713931

room_database 66.0762976599094

speaker 65.6659164078901

gps 65.6478179873468

local_storage 64.5536233840085

ambientlight 63.0030057575923

networking 62.6477966616013

Back to the 2 scopes

Ecological impact
Direct Indirect

10% (FR)

25%
90% (FR)

75%

Lifespan
(...more devices!!!)

Energy
consumption

eq. CO2, water, abiotic resources

Scope #1: energy consumption
🪄 Avoid extraneous animation 💤 Avoid keep screen on

Scope #2: device lifespan
⚖ Fight software obesity ♻ Support aging devices

Green code
smells

Open source catalog
License CC BY-NC-ND

40+ code smells arranged in 9 categories,
crosscutting scope 1 & 2

Description based on Java (but Kotlin-ready)

https://github.com/cnumr/best-practices-mobile

https://github.com/cnumr/best-practices-mobile

R&D taxonomy

Finding and Fixing
Energy inefficiencies

Developer-centric User-centric

Finding Fixing

Static Analysis Dynamic Analysis Instrumentation Refactoring Collaborative Standalone

Finding Fixing

User-driven Autonomous

Adapted from Marimuthu C. et al., “Energy Diagnosis of Android Applications: A Thematic Taxonomy and Survey”. ACM Comput. Surv. 53, 6, Article 117 (February 2021)

Introducing
ecoCode

Rationales

World-class solution to
improve code quality

No guidelines on how to
write energy-friendly apps

“Green as You Code” sounds good

Screenshots*

*self-hosted instance of the ecoCode SonarQube plugin

Technical hurdles

Outdated Ongoing

Related works
Academic

EcoAndroid [Ribeiro et al., 2021]

E-Debitum [Maia et al., 2020]

xAL [Fatimaa et al., 2020]

aDoctor [Iannone et al., 2020]

Green Android Lint [Le Goaer, 2019]

Non-Academic

Green Software Insights [CAST, 2023]

EcoSonar [Accenture, 2022]

Greensight Sonar [Capgemini, 2022]*

Ecoscan [Enedis, 2020]

*joined the ecoCode project in 2024

Digital commons
Avoid reinventing the wheel every time

Open Source improves IT sustainability. ecoCode
cannot but be OSS

Build a community first (e.g., through
hackathons). The lines of code will follow

Many to watch, few to make
Green Code Initiative (GCI)
https://github.com/green-code-initiative

https://github.com/green-code-initiative

Food for thought

How clean|green code relate?

Clean Code

Green Code

Code Quality

Clean Code Green Code

oris-a-kind-of

is-composed-of

Green software supply chain
Greening the software is noble, but greening the software supply chain too

Motto: “Wherever there's code, eco-coding is possible !”

The “Everything-as-code” is a huge potential reservoir of green code smells :
infrastructure-as-code, configuration-as-code, platform-as-code, …

Static analysis: The great filter
Very few general rules of thumb withstand
the filter of static code analysis
(“use cache”, “not too much videos”, etc.)

Pro Tips: Must be rooted at syntax-level

Bottom-up approach is the preferred way
to find new rules/patterns/best-practices

source

source

https://tqrg.github.io/energy-patterns/#/
https://developer.android.com/training/monitoring-device-state/doze-standby

Static analysis: A noble art
Challenges

🛑 Post-processing

🔎 Cross-scanning

🚩 False positive/negative

Opportunities

🎨 Taint analysis

🕸 Call Graph/Control Flow Graph

🧠 Machine-Learning

Pain point: the evaluation. But…
Unlike 90’s OOP code smells, green code smells are still in their infancy

Do not expect green code to do what clean code has barely done

Sometimes common sense is enough

Ever-evolving mobile platforms makes things even more challenging

Round-trip engineering

design-time run-time

ETSdiff

UX/UI
“Wow effect” is important to attract early-adopters

Our revamped UI was hard-coded. Tailoring the SonarQube UI to green-specific
concepts would require diving deep

Developers can find green code burdensome. Gamification can help (to engage
and reward)

The end.

