u B
olivierlegoaer @ CDR e ::EEII‘LYE'S?!IE

GPL Génie de la programmation PAYS DE 'ADOUR
et du logiciel -

The road to green
code (with Sonar)

The limits to (software) growth

How it started (2011) How it's going (2024)
®0 |
Optimiser le logiciel
3 - L] ,
Softwaf'e is eating the Loi d’erooM d'un facteur 2 tous
World, in all sectors Effort Radicalement Organisé I
d’Optimisation en Masse es2ans

In the future every
company will become a
company

En optimisant le logiciel d’'un facteur 2 tous les
deux ans, on libére de la puissance informatique
avec laquelle on peut inventer de nouveaux usages.

founder of Netscape,
renowned Venture Capitalist
Andreessen-Horowitz

C’est comme la loi de Moore, mais sans changer
le matériel !

©Tristan Nitot

The software eco-*

"%modne*ouﬂeewgﬁ»mu
the one we don't build”

https://www.linkedin.com/posts/charlinerageade_opensource-osxp-fairphone-activity-6998279876692566016-GZbU/

Fork in the road

High-tech

+ eco-coding

(S)Low-tech

First law of eco-coding

energy = (more code)?

e =mc”?

Energy versus Performance

Computer/Device A B
Energy (in joules) 30 20
Time (in seconds) 10 20

Basic eco-coding incentives

¢ Money Reputation

The fewer resources SmartContracts* consume, Bad reviews left on app stores can ruin your
the lower the costs business

ALOR I. H
contract ERC20 is Context, IERC2@, IERC2@Metadata { * 28 avril 2022 a2
mapping(address => uint256) private _balances; Bugs sur les commentaires qui nes‘afﬂchentpas,le lecteur ne per-
met pas de revenir au début, bref trés trés limite |
mapping(address => mapping(address => uint256)) private _allowances; B O R:YShD IABIOS{C ket I. :
decembre 202 226

. . 3 i Jje ne comprends pas pourquoi certains peuvent verrouiller leur profil et pas d'autre...!1?!
uint2oe privake:.totalupply; olle= 1ol Re oIl ELREEWEG]I= |es lecteurs qui drop la qualité de fagon aléatoire alors

Auia la Annnavinn act atahla rrach aléatnira da Iannlicatinn ate

string private _name; !iood life ® |
54

string private _symbol;
Ceci est tellement mauvais Cette mise & jour a échoué car elle consomme beaucoup de bat-

terie de mon téléphone Je ne sais pas comment résoudre ce probléme Jutilise Facebook
pendant quelques instants jusqu'a ce que je remarque qu
Surtout que je n'ai pas le méme probléme avec Instagram Echec de la mise & jour
Donner 1 étoile

*programs running within a Blockchain

Erench roadmap

AVRIL
JUIN
Lancement de la

Convention Citoyenne pour Publication du

le Climat (CCC) rapport final de la
({dd
2019 2020
JUIN
Rapport du sénat
« Rédvire I'empreinte
environnementale dv

numeérique en France »

Proposition de loi

Chaize

EX

MINISTERE

DE LA TRANSITION
ECOLOGIQUE

ET DE LA COHESION
DES TERRITOIRES
Liberté

Egalité
Fraternité

EX

MINISTERE

DE L'ECONOMIE,

DES FINANCES]

ET DE LA SOUVERAINETE
INDUSTRIELLE ET NUMERIQUE

Liberté

Fraternité

OCTOBRE

Engagement des acteurs
économiques sur la
sobriété énergétique

FEVRIER

Publication de la feville
de route gouvernementale
« Numérique et
Environnement »

verdissement
numérique

Cloture de I'AMI

JUILLET
Stratégie d’'accélération

numérique
écoresponsable

Towards an eco-score...

cyber-score (effective in oct. 2023)

@ Laurent Lafon & @L_Lafon - 22 oct. 2020

Les Francais ont besoin d’une information claire et lisible sur le niveau
de protection de leurs données personnelles en ligne.

Ma proposition de loi visant a créer un #CyberScore que toutes les
plateformes devront afficher est examinée cet aprés-midi au Sénat.
@UC_Senat

Afficher cette discussion

CYBER-SCORE

AL

source

Olivier Le Goaér ¥ a publié ceci

o009

€Co

score

eco-score (elusive goal)

©

impact

Logiciels : 1 eco-score, 2 possibilités

Olivier Le Goaér ¥ sur LinkedIn

5 décembre 2022

€& Adel Noureddine et 81 autres personnes

source

®

€Co

score

30 commentaires

https://twitter.com/L_Lafon/status/1319261990431412225?s=20&t=Q1Oc7Ehd_p6BsS6rw_RnfA
https://www.linkedin.com/pulse/logiciels-1-eco-score-2-possibilit%C3%A9s-olivier-le-goa%C3%ABr-/

What if an eco-score?

Information Regulation
App stores display the eco-score to the (Truly sustainable) Cloud providers refuse the
end-users (and include it in their ranking algorithm) deployment of program lower than D

eco-score

’ Goog'e Play Rechercher “ # 0 e

& Applications Catégories v Accuel Classements Nouveautés > O
Mes applications (\) DIy
"'Annlicatic ~ ~
& 3UONS

Acheter
~
~
— » N ~
Jeux p. AN
~ ~
< ramile % oM S~
‘ -—p
Cholx de féquipe
1 NeSCADES Wish des solc Messenge 4 Snapchat
yJ ames Faced Snap Inc
-
Compte o v LA
Utsiiser un code
Acheter une carte cadeau ~Anac’ m
ons

Ma liste de souhaits
Mon acthvité Play

Guide & fusage des
parents

Ranking eco-friendly apps

The top 20 most demanding Apps

Based on a score of how much activity each App demands

DUBbo

Skype

Fitbit

=

Instagram

Booking

Booking.com

()

Amazon Telegram Grindr Likke Linkedin
(7))) =) =) =)

Read the full

source: pCloud (2021)

@) voius

Ranking Top 30 Most Popular Apps — Any Category

A ratio of 1to 4 between the consumption of the least consuming
and the most consuming applications.

source: Atos & Greenspector (2020)

0P HuOOUMR fOpo - BT EENR
Blz|Y|8|B|8|Q|8|m|T|8|&|a|8|B|2|8|3|E[S|8|5
s|E2|2|2|s5|o|z2|z|s|eE|le|3|o|3|s5|lc|e|=s|c&|®|al¢g
o | o S| 9| & i) sl=|x|5[5|8| 8| = |l vl al| s
o lalel 85| 8|le|lale 2| 5|5l 2(2|3|o|B|2|%| 8
85| 3|&8|2|l 8|3 & v 2|9 ® 3|le| 8|58 | &
|l | & o|lxX| = o 81 8|F| & £E|E| 8| ®
Sl =21 =|8|=2|¢@ ol 3| = v RS 5 | =
v} 2| 0O o o | 8 2 o
. ® | 5| [CHII 3 =
g AR -] 2
Bl & S
S 8 5
2 81> 8 = S
B s 4
Y =
v
=
o
E

Google

Clash of Clans

Samsung Internet Browser

Google Chrome

UC Browser

Twitter

Opera Mini

GEHO®BYO

Tik Tok E

P

L

e}

[o]

https://www.pcloud.com/fr/secret-phone-killers
https://greenspector.com/wp-content/uploads/2020/01/Atos-GREENSPECTOR-TOP30-benchmark-english.pdf

Loosely adapted from “INUM : impacts environne

Think global & mobile-first

\ 90% (FR)

o 718%

Ecological impact ~-~_
eq. CO2, water, abiotic resources N N

\
\ Indirect
\j

® o= MW

H Li-ion battery wear

10% (FR)

25%

Direct

Energy Lifespan
consumption (...more devices!!)

mentaux du numérigue en France” (Jan. 2021)

https://www.greenit.fr/wp-content/uploads/2021/02/2021-01-iNum-etude-impacts-numerique-France-rapport-0.8.pdf

Limited impacts

Green programming languages?

Energy (J)
1 . I () C 1.00
You don't always have a choice! (&) Rust 103
(e) CH++ 1.34
(c) Ada 1.70
(v) Java 1.98
(¢) Pascal 2.14
(¢) Chapel 2.18
(v) Lisp 2.27
H ¢) Ocaml 2.40
What about the runtime? % et 2.5
() Swift 2.79
(c) Haskell 3.10
(v) C# 3.14
(e) Go 3.23
(i) Dart 3.83
~v) F# 4.13
H H * i i 2
Mobile apps are programs, but rarely algorithms ety e
(i) TypeScript 21.50
(i) Hack 24.02
() PHP 29.30
(v) Erlang 42.23
(i) Lua 45.98
(i) Jruby 46.54
(i) Ruby 69.91
(i) Python 75.88
(i) Perl 79.58

Rui Pereira et al. “Ranking Programming Languages
by Energy Efficiency”. Science of Computer
Programming, volume 205. Elsevier, 2021.

*mathematically provable object

Code smells: The good old classics

An Empirical Study on the Impact of Android Code Smells on Resource Usage

Feature Envy
God Class
Blob Class
Long Method

Long Parameter List

Johnatan Oliveira', Markos Viggiato?, Mateus Santos

Eduardo Fi

s-Nett

!Department of Computer Science, Pontifical Catholic University of Mina:
?Department of Computer Science, Federal University of Minas G

Anti-patterns and the energy efficiency of

Android applications

{johnatan.oli s X = 5 o . IEEE, Rubén Saborido, Member, IEEE, Foutse Khomh, Member, IEEE,
Understanding Code Smells in Android Applications 10, Member, IEEE, and Giuliano Antoniol, Senior Member, IEEE
Umme Ayda Mannan Iftekhar Ahmed Rana Abdullah M Aimurshed
Oregon State University Oregon State University Oregon State Universit
Corvalls, OR, USA Corvalis, OR, USA Convallis, OR, USA ;e GPUL g
edl i edu edu lecent
0 cousc win anargy eficioncy. Threloe, s mportant 0 take o account energy offciency
Code smells are i Carlos Jensen Jio app. T @
i the app: Atvitn or’gaﬂg’:‘{ B:gmw State University rariation protioms i sfware sy bt 1o o best of our Knowiedg. none of e
ing the maintainabil Corvalis, OR, USA P i [abeing e mpactof o raced
'8 1 u edi type of
apply the refactorin proact of oy ¥;hom 2] wo sty e mpact
ware resource use, § ., which may lead to long-term maintainability problems
e o I PO, LELTESAMT IR TR oo v e sl g e co e pee
studies I Despite mabi s o cole el corle i bug [, %0) Therel the refactoring
Android. This paper] e e i ey ms [12]. However, according to Yamashita Jes-
o i e wmdoradiod W m ot know hot al 2], s 32 (o0 dersonts v of 63
e h"m'_”m"" s::us in mobile applications compare fo those in deskiop bee; Refactoring; Anti-patterns; Mobile apps; Energy consumption
code smells: God Clf Py S b A a2 ound m.: e s ugmlknm e s ol st »
this purpose, we sel soble wplcaions Vi 1ch b, gl 12 e s b e e
show that refactorin| i e o e
: practice and state of the art of mobile development. ‘mobile applications have grown to become a large.
appropriate for Andl -y o st e e n ol smels in Ak I o i At G 2014 e
s will be downloaded. Another G
of God Method had| pplcins s sl s s ol i Vem i e e et e e Satrer et | with the exponential is comprised of methods with low complexity and is the
than 47%, while the i code sl s oty spined by thie share of smartphoncs. Thus, i this paper we focus on hobile apps [1], software result of speculation in the design and-or implementation
memory i finding, study to compare the Android applications. Jl change in the landscape ~ stage. Another common anti-pattern is the Blob, a.ka., God

type. density, and distribution of code smells in m«mm deskiop
applications. We analyze an open-source corpus o

respectively, in one

munity in i TMLOC)and 750 desk
: i (1oal of 16M LOC), and compare 14553 instances of code smlls
newfools. Alsojlegl| (PalSf1MLOC) i cmpar 1453 i o cule il
thus improving the qf desktop applicatons. We find that, despite mobile spplications
keywords: Code S the varicty and density of code smcls is similar, However, the
distributon of code smells s iffrent — some code smell occur

lica pfSmatphon more frequently in mobile applications. We also found. that
1 Intr it ceporis of Al plcaions b il coe
for application developers. 0ol bulders, and rescarchers.

In recent years, nf

one of the most popt 1. INTRODUCTION

: all, Code smells (12] ideniify bad design or coding practices. Code
society, especially c smells are not the same as bugs and do not mean that the code
people’s lives [10]. ather were
platform are mainst
80% of the market fg Permission to make digital or hard copics of all or part of this work for
it has far surpassed ot made or disrbutcd fo profit or commercial advantage and that
the critical factors f opcs e s e s e Tl S e i g T cops
z poston serves o to rdisbute o lsts,
is related to the easq ps....,.m..,.am fee.

3 5 NOBILESof 16, May 1617, 2016, At TX,

apps available to mil Copyright 2016 ACM. ISBN 978- HsuMm 3. sls 0.

Mobile app devel DO hipy . doi g/ 10.1145/12:
ware
phones and tablets, * g gartns comioewsroomAd2153215
battery, and memory /v gartncr comnewsroom/id/ 3061917

is affected by deadli
desktop, once apps o

bigh iy, e code chamges perored nder tne amd
mand. Andoid pplications ofen have more frguent

desktop applications?

Morsoer, ers s ther oo diffeenes between ki
and desktop applications’. applications have limited
resources (g, memory, iy battery). The

cvent.driven ing. Andeoid applications have a
special S ther s o i fcin the cny pinisar
handlers* such as onCreate, onResume, etc. Also,

e Hbraisae differot: Android docs no have alJZSE APl nr
Swing, nor JavaFX. Many APIs are specific to mobile (Contacts,
Graphics,etc.). GUIs
Via XML Do these diffrences in structure and. workflow of

a design point of view,
Juced in the development
praints related to internal
|d battery; as well as ex-
ps. Moreover, traditional
functionality and reliabil-
ibjective visual attributes,

ble in our life today. We

time and for everything;
se the Internet, and even
banking and health moni-
quality is critical. Similar
s, mobile apps age as a

class, which is a large and complex class that centralizes
most of the responsibilities of an app, while using the
rest of the classes merely as data holders. A Blob class has
low cohesion, and hinders software maintenance, making
code hard to reuse and understand. Resource management
is critical for mobile apps. Developers should avoid ant
patterns that cause battery drain. An example of such anti

components of a mobile device (¢.g., Wi-fi, GPS) when they
cannot interact with the user. Another example s the use of
private getters and setters to access class attributes in a class,
instead of accessing directly the attributes. The Android
documentation [6] strongly recommends to avoid this anti

ug-fixing, patkm as virtual method calls are up to seven times more
which sometimes lead to expensive than using direct field access [6].
e oo el of dsbop spleaion ppiis o meote [E) This ; es have pointed out
s Bty e e, hen pplicaion devioper, fanifested in the form of anti-paterns on chang 7], fault-p 181,
‘make wro example of anti-p cﬁm! [9]. In the context of mobile apps,

oty ‘applications. Novel tools and nppma-ch s
ight be needed and the priority in developing. software
engineering tools might need to be revised.

it/ fgamedev sackexchange.com/questions 428K how-
ifferentis-java-for.jre-vs-java-for-andoid

fen a class does too little,
hpp. A Lazy class typically

i and G. Antoniol are with
e

ruben.saborido-infantes,
feors.

kea. Mitaga, Spain. E-mail: chi-

An Energy-Auware Refuctoring
e

DOI reference number: 10.18293/SEKE2018-157

Hecht et al. [10] found that anti-patterns are prevalent
along the evolution of mobile apps. They also confirmed
the observation made by Chatzigeorgiou and Manakos [11]
that anti-patterns tend to remain in systems through several
releases, unless a major change is performed on the system.
ecently, researchers and practitioners have
approaches and tools to detect [12], [13] and correct [14]
anti-patterns. However, these approaches only focus on
object-oriented anti-patterns and do not consider mobile
development concerns. One critical concer of mobile apps

B

Code smells: The new challengers

On the Impact of Code Smells on the Energy
Consumption of Mobile Applications

Fabio Palomba®, Dario Di Nucci®, Annibale Panichella®, Andy Zaidman,
Andrea De Lucia®

Marco Couto
2

Energy Refactorings for Android in the Large and
in the Wild

Joio Saraiva Jodio Paulo Fernandes
7

®University of Zurich - Binzmuhlestrad

P Vrije Universiteit Brussel - Pleif

CDelft University of Technology - Mekelu]
4 University of Salerno - Via Giovanni

Abstract

Context. The demand for green softw:

pecially in the context of mobile devices,
by battery life. Previous studies found h
a strong impact on the energy consumpt]

Objective. Despite the efforts spent so
fluence of code smells, i.e., symptoms of
on the energy consumption of mobile apj

Method. To provide a wider overview ¢

energy efficiency, paper we cond
the influence of 9 Android-specific code |

Android apps. In particular, we focus o
theoretically supposed to be related to n¢
such as performance and energy consum|
Results. The results of the study highli
smell types, i.c., Internal Setter, Leaking
Slow Loop, consume up to 87 times mor
smells. Moreover, we found that refact

consumption in all of the situations.

Conclusions. Based on our findings,
designing automatic refactoring approachy

Keywords: Code Smells, Refactoring, E|

Android Code Smells:
From Introduction to Refactoring

Sarra Habchi®"*, Naouel Moha®!, Romain Rouvoy™'

“University Of Luzemboury
b Université du Québec A Montréal
“University of Lille

Abstract

Object-oriented code smells are well-known concepts in software engineering
that refer to bad design and development practices commonly observed in
software systems. With the emergence of mobile apps, new classes of code
smells have been identified by the research community as mobile-specific
code smells. These code smells are presented as symptoms of important
performance issues or bottlenecks. Despite the multiple empirical studies
about these new code smells, their diffuseness and evolution along change
histories remains unclear.

We present in this article a large-scale empirical study that inspects the
introduction, evolution, and removal of Android code smells. This study re-
lies on data extracted from 324 apps, a manual analysis of 561 smell-removing
commits, and discussions with 25 Android developers. Our findings reveal
that the high diffuseness of mobile-specific code smells is not a result of re-
leasing pressure. We also found that the removal of these code smells is
generally a side effect of maintenance activities as developers do not refactor
smell instances even when they are aware of them

1. Introduction

Energy efficiency is becoming a majo
as applications performing their activit
though the problem is mainly concerned
past researchers have successfully demor

Preprint submitted to Information and Softwan{

1. Introduction

Mobile apps have established themselves as mainstream software
deployed at scale. Over the last few years, they successfully invaded the

“Corresponding author
Email addresses: 2u (Sorra Habehi), soha
(Naouel Moha), romain. rouvoy@inria. fr (Romain Rouv

Preprint submitted to Elsevier October 15, 2020

iho, Portugal Universidade de Coimbra, Portugal
hinho.pt jpf@deiuc.pt

energy consumption has already presented promising
JFscarch resute (4131 These resls, however,have ssen:
Jially been validated by testing code patterns individually and
bften in a small set of applications (sometimes only in one).

In this paper, we consider 11 energy-greedy code patterns
btained from the literature, described in detail in Section IIL

/e conduct a study over a large-scale repository of 600+ An-
firoid applications to understand the frequency of occurrence
such patterns. Within the 200+ applications where the pat-
Jrn were dteced, we stuied he impact tha eplacing hem,
|ndividually and combined, by their documented alternatives
fas on the energy consumption. Moreover, as we consider
kil the possible combinations of the individual patterns, this
fesulted in 400+ refactored applications under analyss.

To perform our study, we developed an extensible, fully au-
Jomated framework called Chimera, which is able to detect and
Jefactor the patierns. Each pattern is considered individually
fad is also combined with all the other pattems. Chimera also
Ineasures the energy consumed by an application in different
imulated usage scenarios, before and after refactoring.

n , the main contributions of this work are:

) An analysis of how energy-greedy patterns proposed in
Jpe Titerature are distributed over a large-scale repository of
[undroid applications. This is described in Sections IV and V;
A reusable prototype of a pattern-oriented testing frame-
k (Chimera), described in Section VI-B, for the detection,
[iltring, and refactoring of patterns in Android applications;
can also run a set of usage scenarios on such applications,
hile collecting metrics such as energy consumption;

) An empirical study, described in Section VI, (o assess the
Inergy impact of applying refactorings. We analyze, for each
and combination of patterns, the test results for
Jhe Android applications on which they occur, and compare
Jhe obtained gains between each pattern/combination.

Using the results of the empirical study referred in 3), we
kim at answering the following research questions:

RQU: Do refactorings consistently lead 10 energy savings?
RQ2: Do all individualrefucorings lead t0 energy savings
of the same magnitude:

RQ3: What are the vefa:lunng.r that, individually or when
combined, produce the higher energy savings?

RQ4: When refactoring for energy effciency, what approach
should developers follow?

Internal Setter
Leaking Thread

Leaking Inner Class
Member Ignoring Method
No Low Memory Resolver
Hashmap Usage

Init OnDraw

Android-specific matters

Battery-killers are nestled at the platform-level, not the language-level
Every Android project has a well-defined, meaningful structure

There are lots of interesting things to inspect:

t(g?lava' ﬁ Gradle = =

S
— File system

Energy-greedy components

Hardware-related Component

Avg. energy consumption (J)

display

139.784567875382

camera

84.1856142588254

microphone

81.8998646885348

gravity

71.3078291080087

magnetic field

69.6877663025097

gyroscope 69.3777997221
accelerometer 67.9535327322522
cpu 66.6925401713931

room database

66.0762976599094

speaker

65.6659164078901

gps

65.6478179873468

local storage

64.5536233840085

ambientlight

63.0030057575923

networking

62.6477966616013

A Framework for the Automatic Execution of
Measurement-based Experiments on Android Devices

Ivano Malavolta’, Eoin Martino Grua', Cheng-Yu Lam', Randy de Vries', Franky Tan', Eric
Zlehnskl Michael Peters?, Luuk Kaandorp'

! Vrije Universitcit

randy.da:.vn‘ts@smdznl.vu.nl, kh.un@vu,n], ca

I, emgria@vunl, 2 nl
vunl, 1. nl

M2mobi, The Netherlands. m peters@m2mobi.com

ABSTRACT

Conducting based for

assessing the quality of Android apps in terms. o e .. energy con-

sumption, CPU, and memory usage. However, orchestrating such
reful

experiments are defined in a descriptive fashion, and then their exe-
cution is fully automatic, customizable, and replicable. We designed
AR with the following design drivers in mind:
« Automation: after an initial configuration, the experiment
can be executed without any interaction from the user;

setup of tools, and the adoption of pirical

best practices scattered across the literature. All together, those

factors are slowing down the scientific advancement and harming

experiments’ replicability in the mobile software engineering area.

In this paper we present Android Runner (AR), a framework for
pased "

and web apps running on Android devices. In AR, an experiment
is defined once in a descriptive fashion, and then its execution is
fully automatic, customizable, and replicable. AR is implemented
in Python and it can be extended with third-party proflers.

AR has been used in more than 25 scientific studies primarily
targeting performance and energy efficiency.

1 INTRODUCTION
Android is the leading mobile platform today and the majority of
scientific contributions on mobile software engineering focuses
on Android [1). When dealing with quality properties like energy
efficiency and performance, practitioners and researchers rely on
the measurement of run-time metrics such as battery discharge.
CPU and memory usage, number and type of network requests, etc.
7.9, 10] In this context, considerable effort and time are spent on
setting up infastructures and software pipelines for conducting
Moreover, wh vailable, exist-
ing pipelines are either (i) ad-hoc for a specific experiment or (ii)
mlmed 10 one specific quality property (e, energy consumption).
pepn presents Android Runner (AR}, 3 framework to au-
native and
web apps. The main goal of AR is to steamline the execution of
measurement-based experiments involving Android devices. In AR

hatpsc/ githubcomS2- groupandroid: et

Permission to make digtal or hard copies of all e part of this work for personal of

. AR always persists the inter-
mediate results of the experiment and, if interrupted. it is
able to resume it and continue with the remaining runs;

‘» Usability: users define the experiment in a descriptive man-
ner, without writing boilerplate code or knowing the inter-
nals of AR

« Customizability: users have the possibility to include their
own business logic and automated testing tools [6] at spe-

ific points within the experiment execution (e.g., before the
whole experiment begins, before or after each run, etc),

« Profiler independence: in AR, run-time measures can be
collected both via hardware (e, the Monsoon power moni-
tor’) and software (e.g., Trepn®). Profilers can produce differ-
ent data points and can interact with apps and the Android
device in their own way: moreover, AR makes straightfor-
ward to use multiple profilers within a single experiment;

. ility: given the sub-
ject apps, and available Android devices, AR can execute an
already-performed experiment with low effort, even if the
experiment has been performed by a third party.

‘We are aware that frameworks like AR must be as accurate as
possible and that their accuracy must be independently verifiable.
In order to facilitate the validation of AR, we created a set of 27
benchmarking apps, each of them stressing a specific hardware
component of an Android mobile device, such as its accelerometer,
camera, CPU. display, GPS, ete.. We use those apps on a regular basis
for validating the accuracy of AR. The full set of benchmarking
apps is publicly auu.me‘ (together with their source code) and can
be reused by the area of
also independently ofA.K

The target audience of AR includes (i) researchers who need
to conduct empirical evaluations of software engineering methods
and techniques involving Android apps. (ii) researchers developing

an the AcM
it b homoeed, Abtacting with cret i pemited o copy therwise. o el

new for Android devices, and (iii) practitioners
needing to qu:nnuuvely assess the quality of their own spps.
der of the paper i

fee. Request permissions froe permssions @acmof
ASEW 0 Sepember 2125, 0. Ve Evnt, Al

ACM ISBN 97814503 $125-4/20109.._S15.00
hitpe/dol org/10.1 S 171133422154

ide: i Section 3 p

Shitpe e mmsooncom high- valage.power moeitor

bttt comS2-group/android- spps- beachmark

Back to the 2 scopes

10% (FR)

25%

90% (FR)

o 19%
[[\\ o
Ecological impact .

€(. C02, water, abiotic resources \ .
* Indirect

Direct

Energy Lifespan
consumption (...more devices!!)

Scope #1: energy consumption

/- Avoid extraneous animation 1%z Avoid keep screen on

& Android ¥

Y I app
manifests

[
java public class MainActivity extends Activity {
@ ride

x;java otected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);
getWindow() .addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);

=res
anim

drawable

layout

mipmap
values
» & Gradle Scripts

- <> Java

—

File system

Scope #2: device lifespan

Ifd Fight software obesity v® Support aging devices

android {
defaultConfig {

minSdkVersion 15 android:minSdkVersion="1integer"

targetSdkVersion 33 s 1. . T 1
il e el v android:targetSdkVersion="1integer

android:maxSdkVersion="1integer"

i

dependencies
implementation "androidx.multidex:multidex:2.0.1"

Iy

ﬁGradle

</>
XML

Open source catalog

License CC BY-NC-ND

40+ code smells arranged in 9 categories,
crosscutting scope 1& 2

Description based on Java (but Kotlin-ready

https://github.com/cnumr/best-practices-mobile

© cnumrbest-practices-mobile: | X+

C @ github.com/cnumr/best-practices-mobile

Codespaces Marketplace Explore

& cnumr / best-practices-mobile Pusic X EditPins + || QUwatch 2+ Y Fok @ |+ Starred @) | ~
<> Code (lssues 2 I Pullrequests) Discussions (@ Actions [Projects @ Security | Insights 3 Settings
P | P O cotote : About ®

olegoaer Create CITATION.cff 4coveso 4 daysago O 69 commits
CITATION.cff Create CITATION.cff 4 days ago
CONTRIBUTING.md Update CONTRIBUTING.md last month
LICENSE.md typo in filename tast month
README.md fixed missing Android code smells 5 days ago
README.md 7

Mobile-specific Best Practices

This guide is aimed at developers for mobile platforms who want to make their native apps more sustainable, that
i, both environmentally and socially acceptable. Unlike general rules of thumb, this guide s focused on code
smells, that is surface symptoms that suggest there might be a problem, or that there might be a better way of
writing the code. Therefore, these low-level best practices offer the great advantage of being detectable by
program analysis tools, such as ecoCode Mobile (formerly hosted by Cnurmr)

Android Platform

¢ Environmental Code Smells

Name

Optimized API

Fused Location

Bluetooth Low-
Energy

Leakage

Detailed Description

The fused location provider is one of the location APls in Google Play services which
combines signals from GPS, Wi-Fi, and cell networks, as well as accelerometer, gyroscope,
and other sensors. It s offi ize battery life
Thus, developer has to set up Google Play Service in her gradie file with a dependency to
te.android. ., and then to import from
con.google.android.gns. location instead of the android. location package of the

In contrast to classic Bluetooth, Bluetooth Low Energy (BLE) is designed to provide
significantly lower power consumption. Its purpose is to save energy on both paired
devices but very few developers are aware of this alternative API. From the Android client
side, it means append android. bluetooth. le.x IMports to android. bluetooth.+
imports in order to benefits from low-energy features.

Creation of a Media Recorder object with new MediaRecorder() is used to record audio

B Mobile Ecodesign Best Practices (for
developers)

android oz cods-smal
0 Readme

a8 View license

2 Cite this repository ~

¥ 12stars
® 2watching
¥ 3forks

Releases 2

© V150 (Latest
last week

+1release

Packages

No packages published
Publish your firs package

Contributors 3

o
(™) olegoaer Olivier Le Goatr

T

https://github.com/cnumr/best-practices-mobile

R&D taxonomy

Finding and Fixing
Energy inefficiencies

Developer-centric

Static Analysis

Adapted from Marimuthu C. et al.,, “Energy Diagnosis of Android Applications: A Thematic Taxonomy and Survey”. ACM Comput. Surv. 53, 6, Article 117 (February 2021)

Introducing
ecoGode

'
o
x

® utodon- jectoppup o

Java: Simple Project :: SonarQube Scanner for Gradle - Mozilla Firefox
Jova: Simple Project.. % | #
€)% locahost "8 03 ae =

B Most Visied

UnuxMint 5 Community = Forums

sonarqQube

© Java :: Simple Project :: SonarQube Scanner for Gradle Ve

Overaiew ~ Components Issues More v

[Severity Retumn to List (=) Java : Simple Project :: SonarQube Scanner for Gradle [Zsr 41/2¥ Reload New Search
O Blocker 0 © Minor 0

Java : Simple Project :: SonarQube Scanner for Gradle

O critical X O lnfo 9 3 src/main/java/example/Greeting java

© Major 2 12 20min - 2€ 60.0%

Debt Ist

Lines es Coverage
Resolution
package example;

Unresolved 2 Fixed 0
False Positive 0 Won't fix | public class ereeting {
Removed 0 4 public void coveredsyunitTest() {

system.out.println("Hello, world.");
0O status
O New Replace this usage of System.out or System.err by a logger. 2hoursago~ L5 5

w Issues
@ Major O Open Not assigned Not planned 10min debt W bad-practice

O Rule
O Tag S |
O Module public void notCoveredByunitTest() {

systen. out .println("Hello, world.");
O Directory
O File Replace this usage of System.out or System.err by a logger. 2hoursago~ L9 &5

android
studio

No guidelines on how to SonarQUbe\\\ World-class solution to

write energy-friendly apps improve code quality

“Green as You Gode” sounds good

2-step
implementation

It takes 2 simple steps to implement Clean as You Code.

T

Quality Gate on New Code

A Quality Gate focused only on metrics for
New Code — added or changed — prevents new
issues from creeping in. Sonar sets this by
default and aligns developers across the
organization to deliver to that standard.

don’t release unless it’s green

The only rule that needs to be applied is the
common organizational understanding that no
project will be released to production if it's
failing its Quality Gate.

Screenshots*

& c
<4> ecoCode

& MyApp %

Overview Issues

Al

FILTERS

> Type CODE SMELL

v Severity

Minor

@ Major

v

Scope

v

Resolution

v

Status

v

Security Category

v

Creation Date

v

Language
> Rule

> Tag

v

Directory

Issues

Projects

Issues

master ©

Security Hotspots

My Issues

Clear All Filters |

Nolivélle-Aquitaine

& sonarqube.ecocode.io

Rules

Quality Profiles Quality Gates

Measures Code Activity
O T4
B i i ifest.xml

Clear |

& aQ w 0O @ Navigation privée

May 12, 2022, 11:58 AM Version unspecified {}

to select issues.

roject Information

« | - tonavigate () 1/6issues

(] Battery optimization should not be ignored. See Rule
@ Code Smell v @ Major v O Open v Not assigned v 1h effort Comment

21 hoursago~ L8 %
W ecocode, environment, power ¥

[

= src/.../univpau/uppamaps/Screens/City/CityListener.java

5 See Rule
@ Code Smell » @ Major v O Open v Not assigned v 20min effort Comment

O see Aue
@ Code Smell » @ Major v O Open ~ Not assigned v 20min effort Comment

Use com.google.android.gms.location instead of android.location to maximize battery life.

See Rule
@ Code Smell » @ Major » O Open ~ Not assigned ~ 20min effort Comment

[sre java

Use com.google.android.gms.location instead of android.location to maximize battery life.

See Rule

*self-hosted instance of the ecoCode SonarQube plugin

— Use com.google.android.gms.location instead of android.location to maximize battery life.

. Use com.google.android.gms.location instead of android.location to maximize battery life.

21 hoursago v L5 %

W ecocode, environment, optimized-api

21 hoursagov L6 %

W ecocode, environment, optimized-api ~

21 hoursago v L17 %

W ecocode, environment, optimized-api ~

21 hoursago~ L8 %

Size

<1k

Projects
& sonarqube.ecocode.

Projects | Issues Rules Quality Profiles Quality Gates

My Favorites

Perspective: Overall Status - Sort by:
v MyApp =
ite
~< &) 0
Social
sility

Yy O @ Navigation privée (2)

Name -

6

-

Environment

1.0f 1 shown

D 91.5k

Java, Xml

1 projects ®

Last analysis
5 minutes ago

This application is based on SonarQube™ but is not an official version provided by SonarSource SA.
Community Edition - Version 8.6.1 (build 15039) - LGPL v3 - Community - Documentation - Plugins - Web API - About

Technical hurdles

Outdated Ongoing

N\ N\
sonarqube\\\ g Java @hp sonarqube\\ g Java @hp

—

<xml /> <xml />

— ® ..

ANTLR

Related works

Academic

D

EcoAndroid [Ribeiro et al., 2021]
E-Debitum [Maia et al., 2020]
xAL [Fatimaa et al., 2020]
aDoctor [lannone et al., 2020]

Green Android Lint [Le Goaer, 2019]

Non-Academic

©) Green Software Insights [CAST, 2023]
N EcoSonar [Accenture, 2022]

N) Greensight Sonar [Capgemini, 2022]*

N EeoseanftEredis; 26267

*joined the ecoCode project in 2024

Avoid reinventing the wheel every time

Open Source improves IT sustainability. ecoCode
cannot but be OSS

Build a community first (e.g., through
hackathons). The lines of code will follow

Many to watch, few to make

Green Code Initiative (GCI)

https://github.com/green-code-initiative

https://github.com/green-code-initiative

Food for thought

How clean|green code relate?

Clean Code
/\

is-a-kind-of

Green Code

or

Code Quality

is-composed-of

Clean Code

Green Code

Green software supply chain

Greening the software is noble, but greening the software supply chain too
Motto: “Wherever there's code, eco-coding is possible !”

The “Everything-as-code” is a huge potential reservoir of green code smells :
infrastructure-as-code, configuration-as-code, platform-as-code, ...

Static analysis: The great filter

. Energy Patterns for Mobile Apps
Very few general rules of thumb withstand b ; i

This is an open of gy-rel: in mobile Our goal is to
share the knowledge across all developers and make mobile apps more energy efficient.

t h e fi | te r Of Sta ti C C O d e a n a |yS i S We'd love to count on you to make this a thorough catalogue and available to the mobile

development community. Help us spread the word.

A visualization with pi and of patterns can be found here.
(¢ u S e C a C h e ” o« n Ot to O m u C h Vi d e O S ” etc) ([T This catalog has been accepted to the Journal of Empirical Software Engineering. Check
) bk °

out the preprint.

developers an. Docs Plus v Q search @ Language ~ Android Studio Connexion
DOCUMENTATION
Overview Guides Ul Guide Reference Samples Design & Quality

Dark Ul Colors

Provide a dark Ul color theme to save bg o

. — Lonmance Android Developers > Docs > Guides Ce contenu vous atil été wtile? Iy G
Dynamic Retry Delay prongpen

Pro Tips: Must be rooted at Syntax_level Whenever an attempt to access a resoul :::o:“'a".'.‘l':”

before asking access to that same resoy + Baseline Profiles optimize fOl' Doze and App
» Aopstrup Standby ©-

Avoid Extraneous Work

» Guides
Avoid performing tasks that are not visiq ~ Solving common problems Surcettepage v
Understanding Doze
obsolete. App Startup Doze restrictions.
* Rendering /Adapt your app to Doze
Race-to-idle + Memory Understanding App Standby

X Using FCM to interact with your app while the device is idle
Release resources or services as soon a ~ Battery and power

Bottom-up approach is the preferred way s R

Open Only When Necessary itk

Monitor the battery o
Open/start resources/services only whel level and charging
o . state Starting from Android 6.0 (AP! level 23), Android introduces two power-saving features
to find new rules / atterns / best-practices I ihat extend bter e foruse by managing how sps behave when acevce s not
Push Over Poll Status and connection connected to a power source. Doze reduces battery consumption by deferring
metering background CPU and network activity for apps when the device is unused for long
Determing and periods of time. App Sfandby defers background network activity for apps with which the
source monitor docking state user has not recently interacted.
and ype

While the device is in Doze, apps' access to certain battery-intensive resources is

Profile battery usage deferred until maintenance windows. The specific restrictions are listed in Power

with Batterystats and

Battery Historian Management Restrictions.

Analyze power use Doze and App Standby manage the behavior of all apps running on Android 6.0 or higher,

with Battery Historian regardless whether they are specifically targeting AP level 23. To ensure the best

Test powerrelated experience for users, test your app in Doze and App Standby modes and make any
@ necessary adjustments to your code. The sections below provide details.

source

https://tqrg.github.io/energy-patterns/#/
https://developer.android.com/training/monitoring-device-state/doze-standby

Static analysis: A noble art

Challenges

@ Post-processing

2 Cross-scanning

P False positive/negative

Opportunities

€ Taint analysis

¥ Call Graph/Control Flow Graph

Machine-Learning

Pain point: the evaluation. But...

Unlike 90’s OOP code smells, green code smells are still in their infancy
Do not expect green code to do what clean code has barely done
Sometimes common sense is enough

Ever-evolving mobile platforms makes things even more challenging

Round-trip engineering

<4>

ecoCode

design-time

Joular#
%
PowDroid

ETSdiff

run-time

UX/UI

“Wow effect” is important to attract early-adopters

Our revamped Ul was hard-coded. Tailoring the SonarQube Ul to green-specific
concepts would require diving deep

Developers can find green code burdensome. Gamification can help (to engage
and reward)

