
GREEN Pauware
For a power-thrifty mobile app marketplace

http://green.pauware.comOlivier Le Goaër
olivier.legoaer@univ-pau.fr

http://green.pauware.com/

Rationales

 A growing landscape of devices
 Billions of smartphone and tablets owners but also wearables, TVs,

and much more to come with IoT

 Powered by mobile platforms like Android (leader in market share)

 An overwhelming number of apps (the case of Android)
 2,6 million of apps available on store (2018)

 19 billions of downloads each year (2017)

Does one of the biggest software industries
on this planet is eco-responsible?

A negative
impact on the
environment

 When microwatts are precious
 Taming the power consumption of mobile apps is part of the

responses to the global ecological challenge

 Avoiding that battery-limited devices are in charge too often
ultimately fights against resource exhaustion

 The gains add up
 Making an app more energy-friendly, even modestly, means saving

energy on each device where it is installed

 The impact is huge in the case of behemoth apps (Instagram,
Facebook,…), but apps with a lower audience matter too

A negative
impact on the
User
eXperience

 Blaming the app
 « when I use this app, my phone’s battery life goes down the tubes »

 Leads to poor reviews and rating. Massive uninstalling.

 Blaming the device/OS
 « I’m always having to charge this @#%@$*!!! Thing »

 Leads to a depressed market of the device… and apps that support
this device

Sources of
power drain

 Screen

 CPU

 Radios (Wifi, mobile data, Bluetooth, etc)

 “Disk” I/O

 Sensors (accelerometer, GPS, camera, etc)

A label for
Google Play
(fictional)

C

D

A+

G

D A

D?

One label to
rule them all

 Websites became mobile-friendly as soon as Google announced
that it would take them into account in its SEO. Mobile apps will
become energy-friendly as soon as an energy label is displayed on
Google Play.

 End-users already choose the apps they perceive as the most
energy-efficient. The developers know this and want to satisfy this
expectation. An energy label is just an acknowledgement of that.

State of
commitment

 Device manufacturers continuously improve the efficiency of
batteries

 The futur of Lithium-ion: Lithium-air, Graphene Battery, …

 Mobile OS provide intelligent features for power management
 Doze mode and App Standby since Android 6.0

 Adaptive Battery since Android 9.0

 It still raises the question of how energy-intensive the apps
themselves are…

 Energy efficiency is a non-functional requirement (as is security for
example)

 Eco-responsible design of mobile apps implies writing green code

Sustainable Software
Development
How to assess the green-ness of an app

Energy
Diagnosis of
an app

 Diagnosis at run-time (dynamic analysis)
 Instrumented measure of the power consumption of a running app

 A realistic (not monkey one) testing scenario must be tailored for
each app, and played several times

 What about scalability?

 Diagnosis at design-time (static analysis)
 Evaluate if an app is « Green-by-design »

 Flags potential energy bugs, regardless the nature of the app

 Provided the source code is available, the diagnosis may apply
automatically

Green-by-
design: a
bonus-malus
system

ECOLOGICAL BONUS

 Demonstrates the
developer's willingness to use
the most energy-efficient
APIs and his intent to adhere
to some proven coding
guidelines.

ECOLOGICAL MALUS

 Power-related code smells
(flaws) reside on the source
code. They may be the result
of carelessness or lack of
knowledge on the part of the
developer.

Android Bonus
#1

 NAME
 Battery-efficient Location

 DESCRIPTION
 Monitoring location changes is a very battery-intensive task when

done in the regular way, while there exist optimized solutions

 FusedLocationProvider API (Google)

 HyperTrack SDK (Third-party)

 DIAGNOSIS
 Check if these APIs have been imported (and used) into the project,

instead of the classic one

Android Bonus
#2

 NAME
 Defering (Lazy First principle)

 DESCRIPTION
 “Does an app need to perform an action right away? For example,

can it wait until the device is charging before it backs data up to the
cloud?” From here

 DIAGNOSIS
 Check if the app has registered on the
ACTION_POWER_CONNECTED broadcasted platform event in the
purpose to do some stuff

https://developer.android.com/topic/performance/power/

Android Bonus
#3

 NAME
 Dark UI

 DESCRIPTION
 Provide a UI with dark background colors. This is particularly

beneficial for mobile devices with AMOLED screens, which are more
energy efficient when displaying dark colors.

 DIAGNOSIS
 Check if Activities are associated with Theme.Holo.Dark style

(and its variants) or if layouts aren’t using bright background colors

Android Bonus
#4

 NAME
 Sensors Coalesce

 DESCRIPTION
 “An alternative function allows events to stay temporarily in the

hardware FIFO (queue) before being delivered. The events can be
stored in the hardware FIFO up to maxReportLatencyUs
microseconds. […] Setting maxReportLatencyUs to a positive
value allows to reduce the number of interrupts the AP (Application
Processor) receives, hence reducing power consumption, as the AP
can switch to a lower power state while the sensor is capturing the
data.” From here

 DIAGNOSIS
 Check the calls to the old method registerListener
(SensorEventListener listener, Sensor sensor,

int samplingPeriodUs)

https://developer.android.com/reference/android/hardware/SensorManager.htmlregisterListener(android.hardware.SensorEventListener,%20android.hardware.Sensor,%20int,%20int)

Android Bonus
#5

 NAME
 Bluetooth Low Energy (BLE)

 DESCRIPTION
 “In contrast to Classic Bluetooth, Bluetooth Low Energy (BLE) is

designed to provide significantly lower power consumption”. From
here

 DIAGNOSIS
 Check if the package android.bluetooth.le is imported

instead of android.bluetooth

https://developer.android.com/guide/topics/connectivity/bluetooth-le

Android Malus
#1

 NAME
 Sensors Leak*

 PROBLEM
 “ Always make sure to disable sensors you don't need, especially

when your activity is paused. Failing to do so can drain the battery in
just a few hours. Note that the system will not disable sensors
automatically when the screen turns off.” from here

 DIAGNOSIS
 Check if the calls to registerListener() and
unregisterListener() on a sensor manager are pairwised and
well-positioned

*This Malus encompasses the GPS leak (requestLocationUpdates/removeUpdates) and the Camera leak (open/release)

https://developer.android.com/reference/android/hardware/SensorManager

Android Malus
#2

 NAME
 Everlasting Service

 PROBLEM
 The Service component is used for long-running operations. Any

started service should be stopped properly

 DIAGNOSIS
 Check if for the call to startService(), it exist either a call to
stopService() or stopSelf() or stopSelfResult()

Android Malus
#3

 NAME
 Internet In The Loop

 PROBLEM
 Performing a call to internet repeatedly (a.k.a pull method) requires

a superfluous connectivity (WiFi or mobile data). Study here

 DIAGNOSIS
 Check if instances of classes
org.apache.http.client.HttpClientor
java.net.HttpURLConnection are used inside a loop
statement

ftp://ftp.kom.tu-darmstadt.de/papers/BLR13-2.pdf

Android Malus
#4

 NAME
 Wake Lock Plague

 DESCRIPTION
 “ To avoid draining the battery, an Android device that is left idle

quickly falls asleep. However, there are times when an application
needs to wake up the screen or the CPU and keep it awake to
complete some work.” from here.

 DIAGNOSIS
 Check if the android.permission.WAKE_LOCK permission

was declared in the manifest (easier than checking acquisition of
locks via the android.os.PowerManager class)

https://developer.android.com/training/scheduling/wakelock

Android Malus
#5

 NAME
 Excessive Logging

 DESCRIPTION
 Developers resort to logging in their mobile apps to ensure their

correct behavior and simplify bug reporting. However, logging
operations are creating overhead on energy consumption without
creating value to the end user. Study here

 DIAGNOSIS
 Check if the number of calls to android.util.Log is greater

than a threshold (depending of size of the program)

https://link.springer.com/article/10.1007/s10664-017-9545-x

Green Linter
Enforcing green coding rules

Green-aware
IDE

 Android Studio is the official Android IDE and developer tools for
building apps on every type of Android device

 Custom packaging of the JetBrains' IntelliJ IDEA

 Used by at least 5,9 millions of developers (report, 2016)

 This world-class IDE should push ahead green software
 Right place for resolving the green technical debt

 General “these things are BAD” but also “these things are GOOD”
recommendations

 Quick fixes when possible

 Diagnosis and reporting in several formats

https://evansdata.com/press/viewRelease.php?pressID=244

Android Lint

 The tool Android Lint is integrated into Android Studio
 Android Lint has ~350 checks (list here)

 3 checks built-in Android Lint identified as energy-related

Name Description Category Source

ShortAlarm Frequent alarms are bad for battery life. As of API 22,
theAlarmManager will override near-future and high-
frequency alarm requests, delaying the alarm at least 5
seconds into the future and ensuring that the repeat
interval is at least 60 seconds.

Correctness here

BatteryLife
(Background
optimizations)

This issue flags code that either
* negatively affects battery life, or
* uses APIs that have recently changed behavior to
prevent background tasks from consuming memory and
battery excessively.

Generally, you should be using JobScheduler or
GcmNetworkManager instead.

Correctness here

Wakelock
(incorrect usage)

Failing to release a wakelock properly can keep the
Android device in a high power mode, which reduces
battery life. There are several causes of this, such
as releasing the wake lock in onDestroy() instead of in
onPause(), failing to call release() in all possible code
paths after an acquire(), and so on.

Performance here

http://tools.android.com/tips/lint-checks
https://android.googlesource.com/platform/tools/base/+/master/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/AlarmDetector.java
https://android.googlesource.com/platform/tools/base/+/studio-master-dev/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/BatteryDetector.kt
https://android.googlesource.com/platform/tools/base/+/master/lint/libs/lint-checks/src/main/java/com/android/tools/lint/checks/WakelockDetector.java

Extending
Android Lint

 Android Tools Lint API is an extensible framework

 First create a new category Greenness
 Bonus and malus become « issues »

 Implement detectors for these issues (either in Java or Kotlin)

Under the
hood of
Android lint

 Android lint supports various scopes of analysis
 Manifest, Android resources, Source code (.java, .kt files), Bytecode

(.class files), Gradle files, ProGuard files, Property Files, Other files

 Since 2017, source code is modeled through the Universal AST API
 UAST covers both Java and Kotlin

 Augments the PSI API (Program Structure Interface), tied to the
IntelliJ platform

 The Lombok AST API was abandoned

 Quick fix works as a text replacement

https://github.com/JetBrains/uast

Proof Of
Concept

 Demo-time…
 Sensors Leak

 Sensors Coalesce (+Quick Fix)

 Dark UI (+ Quick fix)

 Bluetooth Low-Energy

 Internet-In-The-Loop

 Excessive Logging

Energy labels
How consumers will make informed decisions

Eco-score
formula

 Every green checks (bonus/malus) is associated empirically with a
weight (positive/negative)

 Defering: +1

 Everlasting Service: -3

 …

 The raw score of a mobile app is then computed as follow:

෍

𝑖=1

𝐶

𝑁𝑖𝑊𝑖

 With

 C, the total number of checks in the catalog

 Ni, the occurrence of the checks

 Wi, the weight of the checks

Eco-label

 The score must be mapped with a user-friendly label

 Observation of a statistical distribution
 Get data from open source android projects first (list here)

 Isolation of 6 classes (A, B, C, D, E ,F ,G)

A

https://github.com/TQRG/energy-patterns/blob/master/android_apps.csv

End-to-end
solution

Remote
eco-scores
database C

A+

D

A

Android Studio IDE
+

Green Linter

PUT

score

GET

label

Technical
guidelines

 NoSQL Database => Key-value storage
 {"AppId" : { EcoScore, ApkChecksum }}

 Displaying labels as close as possible to the end-users
 Option 1: Create a dedicated website

 https://www.green.app

 Option 2: Create plugins for major Web browsers

 Superimpose labels on top of https://play.google.com/store/apps
website

 Option 3 : Create the specific Android app « Green Pauware »

 Once installed, it is triggered by any new app installation referenced in
the database, and display the label as a notification

 Option 4: Google Play queries our database

 Maybe I'm dreaming there

https://www.green.app/
https://play.google.com/store/apps

Challenges
Research questions to be tackled

The art of
writing an
Android lint
check

 Writing a custom lint rule, or wading through undocumented
waters + instable API

 A limited power of expression
 Many bonus/malus cannot be expressed formally (ex: caching data)

 False-positives and false-negatives

 Visitor-style programming is tedious
 Continuation-passing style

 Lack of a query support

 The Querying Helpers of Spoon API, Complex GRAL predicates of
The Graph Repository Query Language (GReQL), etc.

 NEW : a DSL called Lin (see here)

http://spoon.gforge.inria.fr/
https://www.uni-koblenz-landau.de/en/campus-koblenz/fb4/ist/rgebert/research/Graphtechnology/graph-repository-query-language-greql
https://github.com/Serchinastico/Lin

Cross-platform
linter?

 Fast-paced mobile technologies => fragmentation
 Java, Kotlin, Objective C, Swift, Apache week, React Native, Native

Script, Flutter…

 Yet, some checks are shared accross platforms & techs
 Dark UI, Sensors Leak, …

 Abstracting away these linter’s checks (with a pivot language)

Abstract
Check

Android
Check

iOS
Check

React
Native
Check

<<implements>>

Flutter
Check

Questions?
That's all folks

